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Comment: Models as (Deliberate)
Approximations
David Whitney, Ali Shojaie and Marco Carone

1. OVERVIEW

We applaud Buja and coauthors for drawing further
attention to the important problem of model misspec-
ification in regression and to the study of its ramifi-
cations. In their interesting piece, they advocate for
viewing model-based regression coefficients as non-
parametric functionals of the data-generating mecha-
nism. This viewpoint has the advantage of clarifying
the definition of the estimand and formalizing how to
perform model-robust inference based upon influence
functions. In our note, we would like to continue the
conversation along these lines. We wish to highlight
additional considerations that arise in the context of
model misspecification in a broader range of scenarios.
Our main points are as follows:

(i) the model-robust interpretation of model-based
estimands may not always be appealing, particularly
when there is significant model misspecification or the
sampling scheme includes some form of coarsening;

(ii) when the model fitting procedure involves data-
adaptive estimation of nuisances, valid model-robust
inference may be much more difficult to achieve;

(iii) these difficulties can be preempted by defining
deliberate projection parameters and using suitable non
or semiparametric techniques for inference.

2. MODEL-ROBUST INTERPRETATION

Framing regression coefficients as indices for the
‘projection’ of the true regression function onto the
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specified model is intuitively appealing. In our expe-
rience, most practitioners are aware that this is implic-
itly what they are doing when fitting regression mod-
els. However, it must be stressed that not all projec-
tions are useful projections. Below, we highlight that
model-based regression coefficients may have a poor
interpretation when (a) the model used is overly parsi-
monious, or (b) when the data are subject to some form
of coarsening.

2.1 Targeted Versus Indiscriminate Parsimony

A primary reason for the popularity of regression
models is their ability to summarize parsimoniously
key relationships. However, parsimony can have sev-
eral impacts on the interpretation of regression coeffi-
cients. For example, it can mask effect modification—
this occurs if the portion of the model pertaining to
the exposure of interest is parsimonious. This may
be desirable if the goal is to succinctly summarize
population-averaged relationships. This targeted form
of parsimony is what renders regression models attrac-
tive. However, parsimony could also result in poor con-
founding control—this occurs when the portion of the
model that involves potential confounders is too in-
flexible to allow sufficient deconfounding. This is an
example of indiscriminate parsimony, which is both
unnecessary—it can often be mitigated by the use of re-
gression models with parsimonious exposure involve-
ment but flexible confounding adjustment—and possi-
bly harmful.

As an illustration, we expand upon a simple example
stemming from the discussion of Section 10 in Part I.
There, the authors note that when the underlying as-
sociations exhibit symmetry, there may be little to no
linear trend. To be concrete, suppose that the data unit
consists of the triple (W,X,Y ), including a continuous
outcome Y , exposure of interest X, and confounder W ,
generated from data-generating distribution P . Ordi-
nary least-squares (OLS) regression may often be used
in this context, with exposure and confounder both in-
cluded as main terms, and reported upon with the ap-
propriate caveat that the model coefficients represent
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