
Statistical Science
2019, Vol. 34, No. 4, 575–579
https://doi.org/10.1214/19-STS725
Main article: https://doi.org/10.1214/18-STS693, https://doi.org/10.1214/18-STS694
© Institute of Mathematical Statistics, 2019

Discussion of Models as Approximations
I & II
Dag Tjøstheim

“All models are wrong but some are useful.” This
famous quote is attributed to George Box. The authors
prefer to quote David Cox: “It does not seem helpful
just to say all models are wrong. The very word model
implies simplification and idealization.”

The authors stress the model approximation aspect
in their two interesting and inspirational papers. The
first paper is concerned with linear regression models,
or rather with regression functionals which are linear
in the parameters, and where the functional itself is an
OLS functional. In the second paper, more general re-
gression functionals are treated, including likelihood-
like functionals where nonlinearities can be meaning-
fully discussed.

The use of linear models as approximations is per-
fectly legitimate of course and is probably the most
common approximation used in statistics, quite often
with an additional Gaussian distributional assumption.
In the first paper, the authors deviate from perhaps most
contributors in that they try to find an interpretation of
slope parameters as seen from the general viewpoint of
a more correct and possibly nonlinear model. More-
over, they examine estimation errors under this per-
spective. Most users would be satisfied with evaluating
these properties under the assumption that the linear
model is correct.

The errors of parameter estimates in both papers are
decomposed into two components; one component due
to natural stochastic variations which may well be het-
erogeneous, and one component that is due to model
errors. In the first paper, the authors use the ratio, the
RAV, between a model trusting error and a model ro-
bust error to test model fit, and in the second paper they
suggest that a well-specification test can be based on
reweighting the data.

The model trusting error might be quite large of
course, if, as in some cases in the first paper, the true
model is strongly nonlinear, and the OLS regression
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functional by default ends up in a linear structure. The
authors quote Freedman’s somewhat provocative state-
ment in this case where “... it is quite another thing
to ignore bias [nonlinearity]. It remains unclear why
applied workers should care about the variance of the
estimator for the wrong parameter.” I must admit that
I have some sympathy with this statement, at least if
it can be very easily detected that a linear model is
completely wrong with resulting slope parameter be-
ing close to meaningless.

The authors themselves admit that a general interpre-
tation of a linear regression parameter is “vexing,” and
I am not completely convinced by the authors attempt
in Section 10 in the first paper. I find it not so easy to
grasp. Parts of the difficulties are, in my opinion, that
the authors force a linear structure on something that
might be better, or to a better approximation, be mod-
eled by a nonlinear or nonparametric approach, where
a concrete and easy to understand interpretation of lo-
cal slopes can be found.

In this respect I find the second paper, where nonlin-
ear regression models are allowed, to be more satisfy-
ing. Actually, one might think that the linear regression
functional of paper 1 could have been addressed as a
special case of the set-up in paper 2.

I applaud the general set-up with population based
regression functionals to define population parameters
by extremal values of the functionals. In this sense the
authors’ approach is model free. The estimated param-
eters can then be obtained by minimizing the estimated
regression functionals and consistency and asymp-
totic distributions follow quite straightforwardly. If one
agrees that it is (almost) always meaningful to find er-
rors of these estimates, the two-component decompo-
sition of the errors is useful and ties in admirably with
two basic papers by Hal White, where White (1980)
is very much cited and deals with the purely random
noise components, and White (1981) is much less cited
and concerns the errors of model maladjustment.

The authors’ approach makes for interesting and
sometimes quite controversial reading for reasons
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