Contributed Discussion on Article by Chkrebtii, Campbell, Calderhead, and Girolami^{*}

Comment¹ by François-Xavier Briol^{2,3}, Jon Cockayne⁴, and Onur Teymur⁵

Abstract. We commend the authors for an exciting paper which provides a strong contribution to the emerging field of probabilistic numerics. Below, we discuss aspects of prior modelling for differential equations which will need to be considered thoroughly in future work.

Keywords: probabilistic numerics, uncertainty quantification, numerical analysis.

Introduction

The majority of probabilistic numerics (PN) solvers, including the present paper, take a Bayesian viewpoint and hence require several modelling choices including prior specification. As with any inference problem, there exists a trade-off between representing prior beliefs and choosing a prior which is convenient and/or readily interpretable mathematically. We believe that the consequences of these assumptions are often discussed in too little detail and therefore highlight below several issues to consider.

Computational Complexity

Of interest was the discussion into reduction of the computational complexity by exploiting compactly supported covariance function. The authors note in Section 3.2 that while such a choice will yield a method involving inversion of a sparse matrix, this is not explored further – though this will have an effect on the rate of convergence of the estimator. We believe that a study of the extent of this effect is of some importance, as there is a clear trade-off here between steps desired to achieve a required tolerance, and the computational cost of each step.

© 2016 International Society for Bayesian Analysis

^{*}Main article DOI: 10.1214/16-BA1017.

 $^{^1{\}rm This}$ work was completed within the Probabilistic Numerics working group which is part of the 2016–2017 SAMSI programme on Optimization.

²FXB was supported by EPSRC [EP/L016710/1].

 $^{^{3}\}mbox{Department}$ of Statistics, University of Warwick, Coventry, CV4 7AL, United Kingdom, f-x.briol@warwick.ac.uk

⁴Department of Statistics, University of Warwick, Coventry, CV4 7AL, United Kingdom, j.cockayne@warwick.ac.uk

 $^{^5 \}rm Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom, o@teymur.uk$