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Conditions
Thomas S. Richardson and James M. Robins

We congratulate the author on an enlightening ac-
count of the instrumental variable approach from the
viewpoint of Econometrics. We first make some com-
ments regarding the bounds on the ACE under the non-
parametric IV model, and then discuss potential out-
comes in the market equilibrium model.

1. ACE BOUNDS UNDER THE IV MODEL

We consider the model in which X and Y are bi-
nary, taking values in {0,1}, while Z takes K states
{1, . . . ,K}. We use the notation X(zi) to indicate
X(z = i), similarly Y(xj ) for Y(x = j). We consider
four different sets of assumptions:

(i) Z ⊥⊥Y(x0), Y (x1),X(z1), . . . ,X(zK);
(ii) Z ⊥⊥Y(x0), Y (x1);

(iii) for i ∈ {1, . . . ,K}, j ∈ {0,1}, Z ⊥⊥X(zi),

Y (xj );
(iv) there exists a U such that U ⊥⊥Z and for j ∈

{0,1}, Y(xj )⊥⊥X,Z | U .

Condition (i) is joint independence of Z and all po-
tential outcomes for Y and X. (ii) does not assume
independence (or existence) of counterfactuals for X.
(iii) is a subset of the independences in (i), none
of which involve potential outcomes from different
worlds.1 The counterfactual independencies (i), (ii),
(iii) arise most naturally in the context where the in-
strument is randomized, as depicted by the DAG in
Figure 1(a). Assumption (iii) may be read (via d-
separation) from the Single-World Intervention Graph

Thomas S. Richardson is Professor and Chair, Department
of Statistics, University of Washington, Box 354322, Seattle,
Washington 98195, USA (e-mail: thomasr@uw.edu). James
M. Robins is Mitchell L. and Robin LaFoley Dong
Professor, Department of Epidemiology, Harvard School of
Public Health, 677 Huntington Avenue, Boston,
Massachusetts 02115, USA (e-mail:
robins@hsph.harvard.edu).

1In other words, they do not involve both Y (x0) and Y (x1), nor
X(zi) and X(zj ) for i �= j .

(SWIG)2 G1(z, x), depicted in Figure 1(b), which rep-
resents the factorization of P(Z,X(z), Y (x),U), im-
plied by the IV model.

Lastly (iv) consists of only three independence state-
ments, but does assume the existence of an unobserved
variable U that is sufficient to control for confounding
between X and Y . No assumption is made concern-
ing the existence of counterfactuals X(z); confounding
variables (U∗) between Z and X are permitted (so long
as U∗ ⊥⊥U ). The DAG G2 and corresponding SWIG
G2(x) are shown in Figure 1(c), (d). In Richardson and
Robins (2014), we prove the following.

THEOREM 1. Under any of the assumptions (i),
(ii), (iii), (iv), the set of possible joint distributions
P(Y (x0), Y (x1)) are characterized by the 8K inequal-
ities:

P
(
Y(xi) = y

)

≤ P(Y = y,X = i|Z = z)(1)

+ P(X = 1 − i|Z = z),

P
(
Y(x0) = y,Y (x1) = ỹ

)

≤ P(Y = y,X = 0|Z = z)(2)

+ P(Y = ỹ,X = 1|Z = z).

Thus a distribution P(X,Y |Z) is compatible with
the stated assumptions if and only if there exists a dis-
tribution P(Y (x0), Y (x1)) satisfying (1) and (2).

THEOREM 2. Under any of the assumptions (i),
(ii), (iii), (iv) for all i, j ∈ {0,1}, P(Y (xi) = j) ≤
g(i, j), where

g(i, j) ≡ min
{
min

z

[
P(X = i, Y = j |Z = z)

+ P(X = 1 − i|Z = z)
]
,

min
z,z̃:z �=z̃

[
P(X = i, Y = j |Z = z)

+ P(X = 1 − i, Y = 0|Z = z)

+ P(X = i, Y = j |Z = z̃)

+ P(X = 1 − i, Y = 1|Z = z̃)
]}

.

2See Richardson and Robins (2013) for details.
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