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Rejoinder

Marco Scutari *

I would like to thank Hao Wang, Adrian Dobra, Christine Peterson and Francesco
Stingo for the insightful comments and critiques they contributed to the discussion.
The material contained in the paper originated in large part as the theoretical core of
my Ph.D. thesis (Scutari 2011), and served the purpose of improving my understanding
of the workings of prior and posterior distributions on graph structures as much as that
of exploring novel applications. As a result, and as the discussants have observed, the
paper provides a useful starting point for further developments while not focusing on
specific applications such as prior specification or the analysis of real-world data.

The discussants’ remarks highlight key strengths and limitations in the material, and
suggest several useful directions for future research. In the following, I will concentrate
on four topics that were touched on in all discussions: the development of new priors,
sampling random graphs from non-uniform distributions, the applications and interpre-
tation of the covariance matrix and the entropy of P(G(€)) and P(G(E)|D), and the
role of structure learning in graphical modelling.

1 Developing new prior distributions

In the paper much attention is devoted to the uniform prior and the maximum entropy
case. As remarked by Dobra, other choices are available in the literature that are more
flexible and tailored to real-world data. Additional examples inspired by genetics and
systems biology are presented, for instance, in Imoto et al. (2003), Werhli and Husmeier
(2007) and Mukherjee and Speed (2008). The reason for investigating the uniform prior
is two-fold. First of all, it is a limit case in terms of entropy and therefore it is useful
as a term of comparison along with maximum entropy distributions. Furthermore, the
uniform prior is a de facto standard for P(G(£)) in computer science and artificial
intelligence literature on Bayesian networks, to the point that sometimes its use is not
even mentioned explicitly but is implied by the fact that imaginary sample size is the
only hyperparameter.

Developing new priors using the second order moments of P(G(€)) (i.e. arc and edge
correlations) in addition to first order moments (i.e. arc and edge probabilities) presents
significant challenges due to the number of parameters involved. As the discussants
pointed out, achieving sparsity and addressing the need for multiplicity adjustment
while keeping hyperparameter specification simple is a difficult task. In my thesis, I
addressed a related problem, the regularisation of the covariance matrix of P(G(€) | D)
with the shrinkage estimators from Ledoit and Wolf (2003) and Schéfer and Strimmer
(2005). Such estimators have a Bayesian interpretation and can be used to achieve
sparsity by shrinking diag(X) and (in turn) edge and arc probabilities towards zero
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