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Comment on Article by Scutari

Adrian Dobra ˚

This is an interesting and thought-provoking paper which focuses on defining new prior
distributions on graphical structures. Priors on graphs represent a key component
of any Bayesian approach for graphical models, hence the identification of new prior
distributions for graphs is a very important topic. The author proceeds by modeling the
possible edges of a graph through appropriate joint probability distributions. This idea
receives a good treatment in this writing, but it is certainly not as novel as the author
might seem to suggest by not mentioning many other papers who used various priors
on graphs which are different from the uniform prior given in equation (2) page 2 of the
paper. In fact, the Bayesian literature dedicated to graphical models has a longstanding
track of using priors that encourage sparsity in order to increase interpretability and
avoid the risk of overfitting. Some of these priors are constructed precisely by treating
edges as random variables. In the context of DAGs, a typical prior specification starts
with the traditional Bayesian variable selection prior for regressions which is defined by
assuming a constant probability of inclusion β of each variable xi, i P V “ t1, 2, . . . , pu,
in the regression model. This leads to a prior Prpkq9pβ{p1 ´ βqqk associated with a
regression with k predictors. Independent priors for regressions in the compositional
specification of a DAG D,

xi “
ÿ

jPpapiq

γijxj ` ϵi, for each i P V,

where papiq are the parents of vertex i in D, lead to the following prior for D (see, for
example, Dobra et al. (2004)):

PrpDq9pβ{p1 ´ βqq

p
ř
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#papiq

.

The DAG D becomes sparser as
`

p
2

˘

β gets smaller. In the context of Gaussian graphical
models, a usual choice is the uniform prior PrpGq91. Alternative priors on Gp, the set
of graphs with p vertices, have been developed by assuming a constant probability of
inclusion β P p0, 1q of each edge. This leads to a prior for a graph G P Gp (Dobra et al.
2004; Jones et al. 2005)

PrpGq 9 pβ{p1 ´ βqqsizepGq, (1)

where sizepGq is the number of edges in G. Sparse graphs receive high prior probabilities
when
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β is small. By assuming β „ Betapa, bq, Carvalho and Scott (2009) integrate
out β in (1) to obtain the following prior on Gp:

PrpGq 9 B

ˆ

a ` sizepGq, b `

ˆ

p
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´ sizepGq

˙

{Bpa, bq, (2)
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