
Bayesian Analysis (2013) 8, Number 3, pp. 543–548

Comment on Article by Scutari

Hao Wang ˚

Scutari’s paper studies properties of the distribution of graphs ppGq. This is an interest-
ing angle because it differs from many works that focus on distributions over parameter
spaces for a given graph ppΘ | Gq. The paper’s investigation of ppGq centers around its
implied covariance matrix Σ “ CovpGq. The major theoretical results, as I see it, con-
cern eigenvalues of Σ as well as variance and covariance elements of Σ in the maximum
entropy case for DAGs (i.e., a uniform distribution over all DAGs). While these results
are certainly very worth noting by their own intellectual merits, what practical differ-
ence they might make is unclear to me. Eigenvalues of Σ might be hard to interpret in
terms of their intuitive connections with underlying graph structures. The maximum
entropy case is somehow limited as it is rarely the case for posterior graph distributions
and is also often less preferred than sparser cases for prior graph distributions. More
discussions on the implications of these theoretical results on real data analysis will be
very helpful.

The more general point raised by the paper is more interesting to me. It calls atten-
tion to deeper investigation on statistical properties of distributions of graphs ppGq. In
the literature of my own research topic of Gaussian graphical models (Dempster 1972),
existing studies usually only focus on a point estimation of G from ppGq – the mean
or the mode of ppGq is often used to represent prior belief or to summarize posterior
information. The paper’s framework extends this sort of simple summary to the covari-
ance matrix Σ of ppGq. It is then tempting to ask what will be gained from these extra
efforts. Specific questions include how to construct a prior ppGq with a consideration
beyond the implied mean or mode graphs, and how to put Σ into a perspective that
better illustrates graph structures than a point estimate alone.

I attempt to explore these questions in this discussion from a more applied point of view
than the paper. In addition, I have some doubts about the paper’s argument of using
variability measures in choosing learning algorithms or hyperparameters. The context
of my discussion is Gaussian graphical models under a fully Bayesian treatment (Jones
et al. 2005). Generalizations of the following points might be made to other undirected
graphs or even DAGs too.

1 Distribution ppGq and its covariance matrix

Similar to the paper, I use the edge set to represent a graph G. Let eij be the binary
edge inclusion indictor variable, that is, eij “ 1 if there is an edge between nodes i
and j in G, and eij “ 0 otherwise. Then the set of k “ ppp ´ 1q{2 binary variables
E “ teiju1ďiăjďp can be used in place of G. The distribution of graphs is ppEq and the
implied k ˆ k covariance matrix is Σ “ CovpEq.
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