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Comment on Article by Miiller and Mitra

Anthony O’Hagan*

Miiller and Mitra have given us a superb paper, eloquently arguing for the many
applications of Bayesian nonparametric (BNP) methods. There is no doubt that such
techniques have enormous value in a wide range of contexts. I want to raise two linked
areas of quite general concern, but these should not be read as detracting in any way
from the quality and importance of this paper.

1 Prior information

Bayesian methods require a prior distribution that encodes genuine prior information
about the model parameters. I find it quite depressing how rarely this fact is taken
seriously in published work which professes to be Bayesian. To illustrate ideas I will
look at the prior distribution in the authors’” Example 1 and ask what genuine prior
information it encodes.

All BNP methods involve specifying a prior distribution for a function. In Example 1,
the unknown function in question is the probability mass function F', where F'(y) is the
probability that a given type of T-cell will be observed y times in the probe. The problem
requires that we specify our prior knowledge about F’; that is, we need to specify a joint
prior distribution for {F(0), F((1), F((2),...}. This is an infinite-dimensional distribution
(as will invariably be the case in BNP applications), so we are looking at a complex
problem.

Complex problems benefit from being build up in stages, so first consider a simple
parametric model. A natural choice in this problem is to suppose that F' is a Poisson
distribution Po(\), for some A, and then to put a prior distribution on A. The use of
the word ‘model’ here is enlightening — all models involve some degree of simplification
of reality. In this case, the parametric model is a simplification of our real prior beliefs.
It states that the prior distribution for F' gives zero prior probability for all possible
distributions F' that are not Poisson distributions. What the prior for A\ says about F
depends to some extent on what judgements were actually used to derive it. Typically,
because A is generally seen as the mean of the Poisson distribution (although of course
it is also the variance), its prior distribution will be elicited by making judgements
about the mean u(F') = Z;O:O yF(y) of F. A few specific judgements such as median
and quartiles of p(F') will have been made and a convenient distribution fitted to those
judgements. The full distribution for F’ is then completed by a judgement that F' is likely
to be unimodal and similar to a Poisson distribution, and the parametric assumption
of a Poisson distribution is then a convenient choice that is ‘fitted’ to this judgement.

The underlying approach applies to all pragmatic prior distribution specification: a
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