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Comment on Article by Müller and Mitra

Anthony O’Hagan*

Müller and Mitra have given us a superb paper, eloquently arguing for the many
applications of Bayesian nonparametric (BNP) methods. There is no doubt that such
techniques have enormous value in a wide range of contexts. I want to raise two linked
areas of quite general concern, but these should not be read as detracting in any way
from the quality and importance of this paper.

1 Prior information

Bayesian methods require a prior distribution that encodes genuine prior information
about the model parameters. I find it quite depressing how rarely this fact is taken
seriously in published work which professes to be Bayesian. To illustrate ideas I will
look at the prior distribution in the authors’ Example 1 and ask what genuine prior
information it encodes.

All BNP methods involve specifying a prior distribution for a function. In Example 1,
the unknown function in question is the probability mass function F , where F (y) is the
probability that a given type of T-cell will be observed y times in the probe. The problem
requires that we specify our prior knowledge about F ; that is, we need to specify a joint
prior distribution for {F (0), F (1), F (2), . . .}. This is an infinite-dimensional distribution
(as will invariably be the case in BNP applications), so we are looking at a complex
problem.

Complex problems benefit from being build up in stages, so first consider a simple
parametric model. A natural choice in this problem is to suppose that F is a Poisson
distribution Po(λ), for some λ, and then to put a prior distribution on λ. The use of
the word ‘model’ here is enlightening — all models involve some degree of simplification
of reality. In this case, the parametric model is a simplification of our real prior beliefs.
It states that the prior distribution for F gives zero prior probability for all possible
distributions F that are not Poisson distributions. What the prior for λ says about F
depends to some extent on what judgements were actually used to derive it. Typically,
because λ is generally seen as the mean of the Poisson distribution (although of course
it is also the variance), its prior distribution will be elicited by making judgements
about the mean µ(F ) =

∑∞
y=0 yF (y) of F . A few specific judgements such as median

and quartiles of µ(F ) will have been made and a convenient distribution fitted to those
judgements. The full distribution for F is then completed by a judgement that F is likely
to be unimodal and similar to a Poisson distribution, and the parametric assumption
of a Poisson distribution is then a convenient choice that is ‘fitted’ to this judgement.

The underlying approach applies to all pragmatic prior distribution specification: a
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