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Rejoinder

Kristian Lum∗ and Alan E. Gelfand†

We very much appreciate these three diverse discussions with virtually no overlap
across them. We first take up the comments of Guhaniyogi and Banerjee (henceforth
GB). With regard to the association structure under the asymmetric Laplace process
(ALP), perhaps our presentation was not as clear as it should have been. Working with
say isotropic covariance functions, we find that, regardless of the specification for the
ξ(s), the resulting correlation depends only on the distance between locations and is
symmetric in p away from .5. Explicitly,

corr(ε(s), ε(s′)) =
ρ(||s− s′||)E(

√
U(s)U(s′) + bpcorr(U(s), U(s′)))

1 + bp

where marginally, the U(s) ∼ Exp(1) and bp = (1−2p)2

2p(1−p) . Note that bp is minimized at
0 when p = .5 and tends to ∞ as p → 0, 1. With a common U(s) = U , we see that
regardless of s and s′, the correlation can not go to 0, taking its minimum at p = .5,
tending to 1 as p → 0, 1. We don’t employ this case. With a copula spatial process
model for ξ(s), equivalently, U(s), we find that, for any p, correlation will go to 0 as
||s − s′|| → ∞. Again, it will take its minimum at p = .5, tending to corr(U(s), U(s′))
as p → 0, 1, given s and s′. We don’t employ this case either. For the case of i.i.d. ξ(s),
the second term in the numerator disappears and the expectation in the first term is
constant (π/4). So now, for any p, correlation will go to 0, as determined by ρ and is
strongest at p = .5, tending to 0 regardless of s and s′ as p → 0, 1. This behavior seems
to be what would be desired for the ε(s) process.

With regard to the asymmetric Laplace predictive process (ALPP), we liked the
novel form of the “bias” adjustment that arises due to the constraint that varZ̈(s) must
be 1. The tapered adjustment form in Sang and Huang (2012) is attractive but, we
agree that its use is not likely to affect the inference in the present context. We concede
that employing the double Gaussian process, drawing from Kottas and Krnjajić (2009)
would be more flexible than the ALP and is investigated in the thesis of Lum (2010). Its
properties and implementation issues are discussed there but presentation was beyond
the scope of this paper. Finally, we do like the GB idea of joint modeling of spatial
quantiles, imagining an application for modeling quantiles of ozone and PM2.5 exposure.

We must take issue with the discussion of Lin and Chang (henceforth LC). They
present a simulation example which seemingly reveals some shortcomings of the ALP.
They claim that because our method does not perform well under the loss function
they suggest, SSE(p) = (qp − q̂p)2, it does not provide the same flexibility as its semi-
parametric frequentist cousin.

First, we disagree that we are using a mean regression model. We are certainly not
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