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Comment on Article by Lum and Gelfand

Rajarshi Guhaniyogi∗ and Sudipto Banerjee†

We congratulate the authors for a well-written article on a problem of clear and
increasing scientific relevance. Quantile regression is being widely deployed in a num-
ber of disciplines to harness additional information about the relationship between the
outcome and covariates at the extremes of the outcome’s distribution. Modeling this
in the context of spatially referenced data is challenging. We have a few comments on
some aspects of the model.

The authors have argued the importance of conditional spatial quantile models to
account for varying effects of covariates across quantiles. To model these conditional
spatial quantiles of the response, they deploy the asymmetric Laplace process (ALP). An
elegant characterization of this distribution in terms of Gaussian and Gamma random
variables constitutes the premise of constructing spatial ALP’s. A particularly attractive
feature of this approach is the ease with which the Markov chain Monte Carlo (MCMC)
samplers can be designed, not only to update model parameters but also to carry out
spatial interpolation at arbitrary locations.

A point worth noting is that the ALP process can induce high correlations between
two outcomes at extreme quantiles (p → 0 and p → 1), even if the corresponding
locations are distant. In other words, outcomes arising from the tails of the distribution
are assumed to be highly correlated, irrespective of how far away in space they have
been collected. This is perhaps why the authors restricted their inference to quantiles
between 0.2 and 0.8 in the Baton Rouge real estate data example. We wonder how
serious this issue is in practice and whether their methodology is rendered invalid for
applications desiring more accurate inference on higher quantiles (see Reich et al. 2011).

We, however, recognize the flexibility of the ALP process to adapt to a more general-
ized set up. In particular, the Gaussian-Gamma representation can be easily extended
to arrive at multivariate asymmetric Laplace processes (see Kotz et al. 2001, refer-
ences therein). The multivariate ALP is characterized by a multivariate normal random
variable and a gamma random variable. Analogous to the univariate setting, the multi-
variate normal random variable can be replaced by a multivariate Gaussian process. It
is not hard to envision rich multivariate spatial quantile regression models for settings
where interest lies in jointly modeling a quantile for multiple spatially referenced out-
comes. A natural choice for the error process is the multivariate ALP. Inference will then
boil down to modeling the matrix-valued cross-covariance function of the multivariate
Gaussian process.

We also appreciate the attention to large spatial datasets for which the authors have
devised the asymmetric Laplace predictive process (ALPP). The Gaussian predictive
process, w̃m(s) in Section 7.1, emerges as a conditional expectation of the full-rank
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