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Comment on Article by Sancetta

Feng Liang∗

I will start my discussion with some clarification on the difference between prediction
consistency (in the Cesaro sense) and universality. Suppose we are given observations
Z1, Z2, . . . sequentially, which, without loss of generality, are assumed to be i.i.d. sam-
ples from some distribution Pθ with density pθ, where θ ∈ Θ. Of interest is to estimate
pθ sequentially based on previous observations. A natural Bayes estimator at time t,
based on Zt−1

1 = (Z1, . . . , Zt−1), is given by

pw(z | Zt−1
1 ) =

∫
pθ(z)w(θ | Zt−1

1 )dθ, (1)

where w(θ | zt−1
1 ) ∝ w(θ)

∏t−1
i=1 pθ(zi) is the posterior distribution of θ updated by data

(z1, . . . , zt−1) and w(θ) is the prior distribution. At time t, we measure the error/risk
of the Bayes estimator pw by its Kullback-Leibler divergence with respect to the true
density pθ, namely,

Dt(pθ||pw) = EZ1,...,Zt−1|θ

∫
pθ(z) log

pθ(z)
pw(z | Zt−1

1 )
dz. (2)

An interesting question is under what conditions pw is a consistent estimator of
pθ. That’s the question studied in Barron (1987). His answer relevant to this paper is
that if prior w is information dense at θ (see Section 1 of Sancetta’s paper), then pw is
consistent in the Cesaro sense, i.e., the Cesaro average of Dt goes to zero,

lim
T→∞

1
T

T∑
t=1

Dt(pθ||pw) = 0. (3)

Universality of prediction, studied in this paper, requires the supremum of the Cesaro
average go to zero,

lim
T→∞

sup
θ∈Θ

1
T

T∑
t=1

Dt(pθ||pw) = 0, (4)

and therefore is stronger than Cesaro consistency (3). For example, consider a simple
normal mean problem with Zt i.i.d. ∼ N(θ, 1). No Bayes procedures pw are universal,
unless θ is in a compact set; on the other hand, many priors that are information
dense lead to consistent Bayes prediction (in the Cesaro sense). Here no estimators
(not just Bayes) are universal because our maximum error at t = 1 is infinity: without
conditioning on any data, our estimate at t = 1 is just a fixed density, whose KL
divergence with respect to N(θ, 1) can be made arbitrarily large (unless the parameter
space Θ is bounded), therefore supθ D1 = ∞. However, in most real applications, what
happens at t = 1 is of little interest. So we could drop D1 (or the first couple of Di’s)
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