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DISCUSSION: LATENT VARIABLE GRAPHICAL MODEL
SELECTION VIA CONVEX OPTIMIZATION1
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1. Introduction. We would like to congratulate the authors for their refresh-
ing contribution to this high-dimensional latent variables graphical model selection
problem. The problem of covariance and concentration matrices is fundamentally
important in several classical statistical methodologies and many applications. Re-
cently, sparse concentration matrices estimation has received considerable atten-
tion, partly due to its connection to sparse structure learning for Gaussian graphical
models. See, for example, Meinshausen and Bühlmann (2006) and Ravikumar et
al. (2011). Cai, Liu and Zhou (2012) considered rate-optimal estimation.

The authors extended the current scope to include latent variables. They assume
that the fully observed Gaussian graphical model has a naturally sparse depen-
dence graph. However, there are only partial observations available for which the
graph is usually no longer sparse. Let X be (p + r)-variate Gaussian with a sparse
concentration matrix S∗

(O,H). We only observe XO , p out of the whole p + r vari-
ables, and denote its covariance matrix by �∗

O . In this case, usually the p × p

concentration matrix (�∗
O)−1 are not sparse. Let S∗ be the concentration matrix of

observed variables conditioned on latent variables, which is a submatrix of S∗
(O,H)

and hence has a sparse structure, and let L∗ be the summary of the marginalization
over the latent variables and its rank corresponds to the number of latent variables
r for which we usually assume it is small. The authors observed (�∗

O)−1 can be
decomposed as the difference of the sparse matrix S∗ and the rank r matrix L∗,
that is, (�∗

O)−1 = S∗ − L∗. Then following traditional wisdoms, the authors nat-
urally proposed a regularized maximum likelihood approach to estimate both the
sparse structure S∗ and the low-rank part L∗,

min
(S,L):S−L�0,L�0

tr
(
(S − L)�n

O

) − log det(S − L) + χn

(
γ ‖S‖1 + tr(L)

)
,

where �n
O is the sample covariance matrix, ‖S‖1 = ∑

i,j |sij |, and γ and χn are
regularization tuning parameters. Here tr(L) is the trace of L. The notation A � 0
means A is positive definite, and A � 0 denotes that A is nonnegative.

There is an obvious identifiability problem if we want to estimate both the sparse
and low-rank components. A matrix can be both sparse and low rank. By explor-
ing the geometric properties of the tangent spaces for sparse and low-rank compo-
nents, the authors gave a beautiful sufficient condition for identifiability, and then
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