
The Annals of Statistics
2012, Vol. 40, No. 4, 2005–2013
DOI: 10.1214/12-AOS1020
Main article DOI: 10.1214/11-AOS949
© Institute of Mathematical Statistics, 2012

REJOINDER: LATENT VARIABLE GRAPHICAL MODEL
SELECTION VIA CONVEX OPTIMIZATION

BY VENKAT CHANDRASEKARAN, PABLO A. PARRILO

AND ALAN S. WILLSKY

California Institute of Technology, Massachusetts Institute of Technology and
Massachusetts Institute of Technology

1. Introduction. We thank all the discussants for their careful reading of our
paper, and for their insightful critiques. We would also like to thank the editors for
organizing this discussion. Our paper contributes to the area of high-dimensional
statistics which has received much attention over the past several years across the
statistics, machine learning and signal processing communities. In this rejoinder
we clarify and comment on some of the points raised in the discussions. Finally,
we also remark on some interesting challenges that lie ahead in latent variable
modeling.

Briefly, we considered the problem of latent variable graphical model selection
in the Gaussian setting. Specifically, let X be a zero-mean Gaussian random vector
in R

p+h with O and H representing disjoint subsets of indices in {1, . . . , p + h}
with |O| = p and |H | = h. Here the subvector XO represents the observed vari-
ables and the subvector XH represents the latent variables. Given samples of only
the variables XO , is it possible to consistently perform model selection? We noted
that if the number of latent variables h is small relative to p and if the condi-
tional statistics of the observed variables XO conditioned on the latent variables
XH are given by a sparse graphical model, then the marginal concentration ma-
trix of the observed variables XO is given as the sum of a sparse matrix and a
low-rank matrix. As a first step we investigated the identifiability of latent vari-
able Gaussian graphical models—effectively, this question boils down to one of
uniquely decomposing the sum of a sparse matrix and a low-rank matrix into the
individual components. By studying the geometric properties of the algebraic vari-
eties of sparse and low-rank matrices, we provided natural sufficient conditions for
identifiability and gave statistical interpretations of these conditions. Second, we
proposed the following regularized maximum-likelihood estimator to decompose
the concentration matrix into sparse and low-rank components:

(Ŝn, L̂n) = arg min
S,L

−�(S − L;�n
O) + λn

(
γ ‖S‖1 + tr(L)

)

(1.1)
s.t. S − L � 0,L � 0.
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