
Bayesian Analysis (2011) 6, Number 2, pp. 205–208

Rejoinder

Peter D. Hoff∗

Abstract. I thank the editor for the opportunity to expand upon the paper, and I
thank the discussants for their insightful comments. In this rejoinder I elaborate on
some of the topics from the discussion: the appropriateness of separable covariance
models for array-valued data, the role of priors and penalties on estimation and
the limiting nature of array valued data.

The article and discussion provide several examples of array-valued and matrix-
valued data, including relational (network) data, space-time and imaging data. Addi-
tionally, in many statistical models the parameters themselves are arrays, even though
the data are not. For example, consider a three-factor experiment or study in which the
levels of the factors are indexed by the sets I,J ,K. Letting yi,j,k,l be the measurement
on the lth subject with levels i, j and k of the three factors, the data itself may not be
an array as the number of subjects per factor combination may vary, but the unknown
cell means {µi,j,k : i ∈ I, j ∈ J , k ∈ K} constitute an array of dimension |I|× |J |× |K|.

It is often desirable to estimate or account for patterns of dependence or similarity
among objects in the index sets of such arrays. The article provides some computational
tools for doing so, by relating the multilinear Tucker product to a class of multivariate
normal distributions with separable covariance structure. A separable covariance struc-
ture is a “reduced model”, in the sense that not all covariance matrices are separable.
In what situations is such a model restriction justifiable? What are the alternatives?

Lopes expresses some concern that separability might not be an appropriate assump-
tion for space-time data. Indeed, Stein (2005) makes a convincing argument against us-
ing separable covariance matrices for such applications. For space-time data, however,
we can often rely on some degree of smoothness or continuity. Smoothness in time and
space allows us to build rich but relatively parsimonious dependence models based on
a small number of parameters that describe spatial or temporal correlation functions.
Thus in the space-time domain, there are a large number of non-separable alterna-
tives to modeling dependence patterns. Even so, in some situations separability may
still be useful: Genton (2007) argues that separable approximations to non-separable
covariance matrices can be useful for some inferential tasks. Additionally, judicious com-
binations of separable and non-separable structure lead to flexible models as in Lopes
et al. (2008). Another way to use separable covariance structure for non-separable co-
variance estimation is in prior specification: Consider a non-separable covariance matrix
Σ = Cov[vec(Y)], where Y is a multiway array. A hierarchical prior for Σ could be of
the form Σ−1 ∼ Wishart(ν0, c×ΣK⊗· · ·⊗Σ1), with the Σk’s also having inverse-Wishart
priors. This centers the prior for Σ around a separable value, but Σ is non-separable
with probability one.
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