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CORRECTION

ERROR ESTIMATES FOR BINOMIAL APPROXIMATIONS
OF GAME OPTIONS
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My student Y. Dolinsky noticed that the inequalities (5.33) needed to obtain the
estimate (5.34) in the proof of Theorem 2.3 hold true only for hedging strategies
without short selling of bonds and stocks, that is, when the amounts of bonds and
stocks in the portfolio are always nonnegative. Since the existence of such hedging
strategies cannot be guaranteed, in general, if their initial capital equals the option
price, the proof should be corrected and we start with an argument due to Dolinsky
which serves this purpose. In the notation of [1] set
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From (5.29)–(5.32) of [1], we obtain that there exists a constant C > 0 such that
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Let τ ∈ T B
0T be a stopping time. Then ντ = min{k ∈ N : θ(n)

k ≥ τ } ∈ T B,n, and so

θ
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ντ ∈ T B is a stopping time (see beginning of proofs of Lemmas 3.1 and 3.6

in [1]). As any self-financing discounted portfolio ŽB (see (5.21) in [1]) is a mar-
tingale, and so taking into account (5.24) in [1] and the optional sampling theorem,
we derive that
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Finally, (3) yields that
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