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This paper tackles the computationally challenging task of comparing the predictions
of the sophisticated Galform computer model for Galaxy Formation to observed light
curves—data on the number of galaxies observed per unit volume in a given bin of
luminosity for a particular band of light. The authors are to be commended for their
clearly careful and diligent model-checking of this complex computer model. Judging
from Figures 12 and 13 they where able to find parameter values that agree much
more closely with the observed luminosity functions then what was previously available.
(Although when comparing with data for which the model was not tuned, as in Figure
14, the results are more ambiguous.) By exploring the distribution of the parameters
that result in acceptable model fits, the authors are able to draw conclusions about the
complex relationships among the parameters of scientific interest. This appears to be an
important step forward in our understanding of the formation and evolution of galaxies
and at the same time demonstrates the power of the authors’ sequential strategy for
searching an enormous space for increasingly likely parameter values.

It may be helpful to illustrate my understanding of the authors’ strategy in terms
of standard statistical methodology using a simple problem. Suppose Yi ∼ N(µi(θ), σ2

i )
are independent for i = 1, . . . , n, with each σ2

i known. The loglikelihood function is
L(θ|Y ) = −

∑n
i=1(Yi − µ(θ))2/2σ2

i . If µ(θ) is not overly complex, we can maximize L
and consider its curvature or contours to make inference and learn about θ. We can also
evaluate L(θ|Y ) at its maximizer, θ̂, or values of θ near θ̂ to check whether the proposed
Gaussian model is adequate for the data. If L(θ̂|Y ) is significantly smaller than we would
expect we conclude that the model is inadequate. The authors consider a problem
in which µ(θ) is very complex, the likelihood can only be evaluated with substantial
numerical effort, and standard optimization, quadrature, and sampling techniques are
apparently impossible or impractical. Instead they search the parameter space by simply
evaluating the objective function, L(θ|Y ) in my simple example, at numerous values of
θ. The evaluation points are then culled by thresholding on L(θ|Y ). A new set of values
of θ are selected in the newly discovered highest-likelihood region of the parameter
space, the likelihood is reevaluated at these points, and the evaluation points are culled
again using a more stringent threshold. This is repeated until a set of parameter values
is obtained that adequately predict the observed data or until all possible value of θ
have been eliminated by the likelihood threshold. Although the authors do not refer
to the Gaussian loglikelihood function, the actual objective functions that they employ
bare a remarkable resemblance to it. Using my notation, the implausibility function
defined in (13) replaces the sum over i in L(θ|Y ) by a maximization over i and the
function in (16) would reduce to L(θ|Y ) in the independent case. In both cases µ(θ)
involves emulation and the implausibility functions differ from the loglikelihood by a
factor of −1/2. Thus, the authors aim to reduce implausibility as I aim to increase the
likelihood. Having identified the set of parameter values that adequately predicts the
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