CORRECTION

RESIDUAL EMPIRICAL PROCESSES FOR LONG AND SHORT MEMORY TIME SERIES

BY NGAI HANG CHAN AND SHIQING LING

Chinese University of Hong Kong and Hong Kong University of Science & Technology

It has been brought to our attention that the limit distribution of Corollary 3.1 on page 2460 of [1] was incorrect. Corollary 3.1 and Remark 3.1 of [1] have to be modified as follows. These changes do not affect the other results in [1].

COROLLARY 3.1. If Assumptions 2.1 and 3.1 hold and \(H \in (1/2, 1) \), then

\[
\left[\sigma_n \sup_x F'(x) \right]^{-1} \sup_x |\hat{K}_n(x)| = o_p(1).
\]

REMARK 3.1. This corollary reflects the effects of the slower convergence rate of the estimated parameter \(\hat{\alpha}_0n \). This fact serves as a reminiscence of the classical Kolmogorov–Smirnov statistics problem when the underlying parameters are estimated; see Durbin (1976). When \(\alpha_0 \) is known, the test statistic (1.5) is still valid, however. As pointed out by the reviewer, when \(F = F(x, \theta) \) involves an unknown parameter \(\theta \), one should consider \(\hat{K}_n \) with \(F(x) \) being replaced by \(F(x, \hat{\theta}_n) \). When \(H \leq 1/2 \), it can be shown that the limit distribution of the statistic exists by means of the result of Wu (2003). The closed form of such a limit distribution is rather complicated and does not possess a simple expression, however, and is not presented here.

REFERENCES

DEPARTMENT OF STATISTICS
Chinese University of Hong Kong
SHATIN, NT
HONG KONG
P.R. CHINA
E-MAIL: nhchan@sta.cuhk.edu.hk

DEPARTMENT OF MATHEMATICS
Hong Kong University of Science & Technology
CLEAR WATER BAY, KOWLOON
HONG KONG
P.R. CHINA
E-MAIL: maling@ust.hk

Received February 2010.