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I recall a great sense of excitement in the seminar room in Madison after Pro-
fessor Székely presented the astonishing findings about distance covariance (in
the spring of 2008). It was one of the best statistics seminars I could remember.
Since before computers, statisticians have held up Pearson’s correlation coefficient
as the most essential measure of association between quantitative variables. R. A.
Fisher’s reputation was sealed, in part, by solving the distribution of this statistic,
and so much of linear-model methodology relates to it. And all the time we’ve had
to add the caveat about independence following zero correlation only if the data are
jointly normal. Spearman’s rank correlation has substantial practical utility in cases
where normality is unreliable, but the goal to have a bona fide dependence mea-
sure seemed to have been beyond the scope of ordinary applied statistics. Some
valid measures did exist, but being driven by empirical characteristic functions,
they were too complicated to enter the toolkit of the applied statistician.

Distance covariance not only provides a bona fide dependence measure, but it
does so with a simplicity to satisfy Don Geman’s elevator test (i.e., a method must
be sufficiently simple that it can be explained to a colleague in the time it takes to
go between floors on an elevator!). You take all pairwise distances between sample
values of one variable, and do the same for the second variable. Then center the
resulting distance matrices (so each has column and row means equal to zero) and
average the entries of the matrix which holds componentwise products of the two
centered distance matrices. That’s the squared distance covariance between the
two variables. The population quantity equals zero if and only if the variables are
independent, whatever be the underlying distributions and whatever be the dimen-
sion of the two variables. The depth of the finding, the simplicity of the statistic,
and the central role of statistical dependence make this an important story for our
discipline.

As a numerical entree, consider six simulated examples of unusual joint distrib-
utions, mimicking those at the wikipedia.org page on Pearson correlation [R code
is available in supplementary files Newton (2009)]. In each case n = 500 points are
randomly sampled. Although there is dependence between horizontal and vertical
components (in all but the case on the far right), the Pearson correlation coefficient
is essentially zero (upper row), consistently estimating the underlying zero corre-
lation. The dependence is revealed by the distance correlation (lower row), which
is the normalized version of the distance covariance. As expected, p-values from
the recommended Monte Carlo test of independence are all small, except in the
last case (not shown).
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