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We would like to thank the discussants for the valu-
able insights and for commenting on important aspects
of model checking that we did not touch in our pa-
per. Our goal was modest (but crucial): to select an
appropriate distribution with which to judge the com-
patibility of the data with a hypothesized (hierarchical)
model, when the test statistic is not ancillary and an
improper prior is used for the hyperparameters. Since
it is important to emphasize that this is by no means the
only aspect of model checking, the discussants’ com-
plementary contributions and comments are all most
welcome. The specific technical contributions of Evans
and Johnson are also appreciated, since their develop-
ments in this area were not mentioned in our review.

Several discussants have highlighted the importance
of graphical displays in model checking. We will not
comment on this because we entirely agree. We sim-
ilarly agree with most of the discussants’ other com-
ments, although in this rejoinder we mainly concen-
trate on disagreements. Our comments are organized
around the main topics that arise in the discussions. We
keep the same notation and terminology used in the pa-
per (although it does conflict with the notation used by
some of the discussants).

ROLE OF PRIOR PREDICTIVE DISTRIBUTIONS
WHEN MODEL UNCERTAINTY IS PRESENT

Bayesian analyses, when model uncertainty is
present (model choice, model averaging), are based on
the prior predictive distributions for the different mod-
els under consideration. Model checking is a quick-
and-dirty shortcut to bypass model choice, and “pure”
Bayesian reasoning indicates that all relevant informa-
tion lies in the (prior) predictive distribution m(x) for
the entertained model.
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As Evans points out, objective Bayes methodology
should be guided by proper Bayes methodology, so ob-
jective Bayes model checking should also be based on
the prior predictive distribution. The difficulty, how-
ever, is that only some aspects of this distribution can
be utilized when the prior distribution is improper.
Bayarri and Berger (1997, 1999, 2000) argue that the
relevant aspect to consider for model checking is a con-
ditional (prior) predictive distribution m(x | u), where
U = U(X) is an appropriate conditioning statistic such
that the posterior π(θ | u) is proper. Model checks
(measures of surprise) computed with this distribution
(such as p-values or relative surprise) are called condi-
tional predictive measures.

If we use a statistic T to measure departure and use
U for conditioning, the relevant distribution for model
checking is then m(t | u). Evans’ prescription can be
put in this framework with T ancillary and U suffi-
cient (caution: Evans’ notation switches the roles of
T and U ). Larsen and Lu’s (from now on L&L) pre-
scription for checking group i is also of this form with
T = T (Xi ) and U = X(−i). The complete theory of
Johnson (not sketched in his discussion) relies on the
whole prior predictive. Hence, all these methods pro-
duce legitimate Bayesian measures of surprise. The
posterior predictive distribution cannot be expressed in
this way (it would produce a trivial, degenerate distrib-
ution).

Bayarri and Berger (1997, 1999) explore several
choices of U and recommend use of the conditional
MLE of θ , that is, the MLE computed in the condi-
tional distribution f (x | t, θ). The resulting measures
of surprise (or model checks) were shown to basically
coincide with the partial posterior measures; indeed,
the conditional predictive distribution for that choice
of U and the partial posterior predictive distribution are
asymptotically equivalent (Robins, 1999; Robins, van
der Vaart and Ventura, 2000).

We have concentrated on partial posterior measures
because they are basically indistinguishable from the
conditional predictive ones and they are easier to com-
pute, but their Bayesian justification comes from the
conditional predictive reasoning. We should perhaps
have reiterated this in the paper.
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