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1. INTRODUCTION

We compliment Bayarri and Castellanos (BC) on
producing an interesting and insightful paper on model
checking applied to the second level of hierarchical
models. Distributions of test statistics (functions of
the observed data not involving parameters) for judg-
ing appropriateness of hierarchical models typically in-
volve nuisance (i.e., unknown) parameters. BC (2007)
focus on ways to remove the dependency on nui-
sance parameters so that test statistics can be used
to assess models, either through p-values or Berger’s
relative predictive surprise (RPS). They demonstrate
shortcomings in terms of very low power of posterior
predictive checks and a posterior empirical Bayesian
method. They also demonstrate better performance of
their partial posterior predictive (ppp) method over a
prior empirical Bayesian method. Methods of Dey et
al. (1998), O’Hagan (2003) and Marshall and Spiegel-
halter (2003) also are compared.

Methods are contrasted in terms of whether they re-
quire proper prior distributions, how many measures of
surprise (one per group or one total) are produced, and
the degree to which data are used twice in estimation
and testing. Their preferred method (ppp) can use im-
proper prior distributions, which are referred to as ob-
jective, produces a single measure of surprise for each
test statistic, and avoids double use of the data. For the
models and statistics considered, in comparison to the
alternatives presented, ppp has a more uniform null dis-
tribution of p-values and more power versus alterna-
tives.
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In this discussion, we suggest that cross-validated
posterior predictive checks using discrepancy mea-
sures hold some promise for evaluating complex mod-
els. We apply them to O’Hagan’s data example, pro-
vide some comments on the paper and discuss possible
future work.

2. CROSS-VALIDATED POSTERIOR PREDICTIVE
CHECKS USING DISCREPANCY MEASURES

Suppose there are data for I groups: Xi, i = 1, . . . , I ,
where Xi = (Xij , j = 1, . . . , ni). The unknown para-
meters in the first level in group i are θi : f (Xi |θi) in-
dependently. The parameters in the second level of the
model are η: π(θ |η) = ∏I

i=1 π(θi |η). The prior distri-
bution on η is π(η). Let D(X,θ, η) be a generalized
discrepancy measure. If D(X,θ, η) = D(X), then it is
a test statistic. Examples are given in the next section
for the normal-normal model considered by BC (2007).
Cross-validated posterior predictive model checking
using a discrepancy measure is implemented as fol-
lows. Separately for each i = 1, . . . , I :

1. Generate M values (m = 1, . . . ,M) from the poste-
rior distribution of η|X(−i); call them ηm

(−i), where
X(−i) represents all the data without group i.
Generating values of η will be accomplished in
many cases through iterative simulation methods
that will generate values of θ(−i), where θ(−i)

is the collection of group parameters excluding
group i: f (η|X(−i)) = ∫

f (η, θ(−i)|X(−i)) dθ(−i) ∝∫
π(η)π(θ(−i)|η)f (X(−i)|θ(−i)) dθ(−i).

2. Generate values θm
i of θi given the hyperparame-

ters ηm
(−i) independently from π(θi |ηm

(−i)), m =
1, . . . ,M .

3. Generate replicate data Xm
i independently from

f (Xi |θm
i ), m = 1, . . . ,M .

4. Compute the proportion of times out of M that
D(Xm

i , θm
i , ηm

(−i)) is greater than D(xi, θ
m
i , ηm

(−i)),
m = 1, . . . ,M .
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