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We redefine the space𝑓 and state the results of [1] in this light.
Let B be a semigroup of positive regular matrices 𝐵 =

(𝑏
𝑛𝑘
).
A bounded sequence 𝑥 = (𝑥

𝑘
) is said to beB-almost con-

vergent to the value 𝑙 if and only if 𝑡
𝑝𝑛
(𝑥) → 𝑙, as 𝑝 → ∞

uniformly in 𝑛, where

𝑡
𝑝𝑛

(𝑥) =
1

𝑝 + 1

𝑝

∑
𝑚=0

𝐵
𝑚+𝑛

(𝑥) ; (𝑝, 𝑛 ∈ N) , (1)

and 𝐵
𝑛
(𝑥) = ∑

∞

𝑘=1
𝑏
𝑛𝑘
𝑥
𝑘
which is 𝐵-transform of a sequence

𝑥 (see Mursaleen [2]). The number 𝑙 is called the generalized
limit of 𝑥, and we write 𝑙 = 𝑓 − lim𝑥. We write

𝑓 = {𝑥 ∈ ℓ
∞

: lim
𝑝→∞

𝑡
𝑝𝑛

(𝑥) = 𝐿 uniformly in 𝑛} . (2)

Using the idea of B-almost convergence, we define the
following.

An infinite matrix 𝐴 = (𝑎
𝑛𝑘
)∞
𝑛,𝑘=1

is said to be B-almost
conservative if 𝐴𝑥 ∈ 𝑓 for all 𝑥 ∈ 𝑐, and we denote it by 𝐴 ∈
(𝑐, 𝑓). An infinite matrix 𝐴 = (𝑎

𝑛𝑘
)∞
𝑛,𝑘=1

is said to be B-
strongly conservative if 𝐴𝑥 ∈ 𝑐 for all 𝑥 ∈ 𝑓, and we denote it
by 𝐴 ∈ (𝑓, 𝑐).

Now, we restate Theorem 11 and Theorem 15 of [1] as
follows, respectively.

Theorem 11. Let 𝐴 = (𝑎
𝑛𝑘
) be a B-almost conservative

matrix. Then, one has
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𝐿
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(
∞
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(3)

where 𝑎
𝑛𝑘

= ∑
∞

𝑗=1
𝑎
𝑛𝑗
𝑏
𝑗𝑘
.

Proof. It follows on the same lines as ofTheorem 11 [1] by only
replacing 𝑎

𝑛𝑘
by 𝑎
𝑛𝑘
.

Theorem 15. Let 𝐵 be a normal positive regular matrix. Let
𝐴 = (𝑎

𝑛𝑘
) be an infinite matrix. Then, one has the following.

(i) If 𝐴 ∈ (𝑓, 𝑐
0
), then

󵄩󵄩󵄩󵄩𝐿𝐴
󵄩󵄩󵄩󵄩𝜒 = lim sup

𝑛→∞

(
∞

∑
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󵄨󵄨󵄨󵄨𝑎𝑛𝑘
󵄨󵄨󵄨󵄨) . (4)

(ii) If 𝐴 ∈ (𝑓, 𝑐), then

1

2
⋅ lim sup
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𝑘
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≤
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(5)

where 𝛼
𝑘
= lim
𝑛→∞

𝑎
𝑛𝑘
for all 𝑘 ∈ N.
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