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Monomial ideals whose depth function has
any given number of strict local maxima
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In recent years there have been several publications concerning the stable set of
prime ideals of a monomial ideal, see for example [4], [7], [10] and [9]. It is known by
Brodmann [2] that for any graded ideal I in the polynomial ring S (or any proper
ideal I in a local ring) there exists an integer ko such that Ass(I*)=Ass(I**1) for
k>ko. The smallest integer ko with this property is called the index of stability of I
and Ass(I™) is the set of stable prime ideals of I. A prime ideal P€|Jy- , Ass(I¥) is
said to be persistent with respect to I if whenever P€Ass(I¥) then P€Ass(I¥+1),
and the ideal I is said to satisfy the persistence property if all prime ideals P&
Usz, Ass(I*¥) are persistent. It is an open question (see [6] and [13, Question 3.28])
whether any square-free monomial ideal satisfies the persistence property.

We call the numerical function f(k)=depth(S/I*) the depth function of I. Tt
is easy to see that a monomial ideal I satisfies the persistence property if all mono-
mial localizations of I have non-increasing depth functions. In view of the above
mentioned open question it is natural to ask whether all square-free monomial ideals
have non-increasing depth functions. The situation for non-square-free monomial
ideals is completely different. Indeed, in [8, Theorem 4.1] it is shown that for any
non-decreasing numerical function f, which is eventually constant, there exists a
monomial ideal I such that f(k)=depth(S/I¥) for all k. Note that a similar result
for non-increasing depth functions is not known, even though it is expected that
all square-free monomial ideals have non-increasing depth functions. In general the
depth function of a monomial ideal does not need to be monotone. Examples of
monomial ideals with non-monotone depth functions are given in [12, Example 4.18]
and [8]. The question arises which numerical functions are depth functions of mono-
mial ideals. Since depth(S/I*) is constant for all £>>0 (see [1]), any depth function
is eventually constant. So the most wild conjecture one could make is that any
numerical function which is eventually constant is indeed the depth function of a
monomial ideal. In support of this conjecture we show in our theorem that for any
given number n there exists a monomial ideal whose depth function has precisely



