Read 13 January 1960

The Diophantine Equation $x^2 + 7 = 2^n$

By T. NAGELL

In Vol. 30 of the Norsk Matematisk Tidsskrift, pp. 62-64, Oslo 1948, I published a proof of the following theorem:¹

When x is a positive integer, the number $x^2 + 7$ is a power of 2 only in the following five cases: x = 1, 3, 5, 11, 181.

Since prof. L. J. Mordell drew my attention to a paper by Chowla, Lewis and Skolem in the Proceedings of the American Mathematical Society, Vol. 10 (1959), p. 663-669, on the same subject, I consider it necessary to publish in English my proof of 1948 which is quite elementary.

The problem consists in determining all the positive integers x and y which satisfy the relation

$$\frac{1}{4}(x^2+7) = 2^y.$$
 (1)

It is evident that the difference of two integral squares u^2 and v^2 is equal to 7 only for $u^2 = 16$ and $v^2 = 9$. Hence we conclude that the exponent y in (1) can be even only for y = 2 and x = 3. Thus we may suppose that y is odd and ≥ 3 .

Passing to the quadratic field $K(\sqrt{-7})$, in which factorization is unique, we get from (1)

$$\frac{x \pm \sqrt{-7}}{2} = \left(\frac{1 + \sqrt{-7}}{2}\right)^{y},\tag{2}$$

whence

$$\left(\frac{1+\sqrt{-7}}{2}\right)^{\nu} - \left(\frac{1-\sqrt{-7}}{2}\right)^{\nu} = \pm \sqrt{-7}.$$
 (3)

Considering this equation modulo

$$\left(\frac{1-\sqrt{-7}}{2}\right)^2 = \frac{-3-\sqrt{-7}}{2},$$

we get, since y is odd and ≥ 3 , and since

$$\left(\frac{1+\sqrt{-7}}{2}\right)^2 = \frac{-3+\sqrt{-7}}{2} \equiv 1 \pmod{\frac{-3-\sqrt{-7}}{2}},$$

¹ The theorem is set as a problem in my *Introduction to Number Theory*, Stockholm and New York 1951 (Problem 165, p. 272).