Multi-dimensional integral limit theorems for large deviations

By Bengt von Bahr

1. Introduction

The problem of large deviations in the central limit theorem was first treated by Khintchine [3] in a special case and later by Cramér [2] in a more general one-dimensional case. His results were slightly improved by Petrov [4], who studied the distribution of sums of independent but not necessarily identically distributed random variables. Richter has proved local central limit theorems in the one-dimensional case [5] and in the multi-dimensional case [6], when the distribution of the sum is either absolutely continuous or of lattice type. He has also stated theorems of integral type [7], but, as he pointed out, he was obliged to restrict himself to the above-mentioned special cases, mainly because the ordinary integral limit theorems were lacking.

Here I want to use the results obtained in [1] to generalize Richter's results in [7] and one of Cramér's results [2] to the multi-dimensional case. I shall only treat the case of a sum of independent and identically distributed random vectors (r.v.'s), the generalization to non-identically distributed r.v.'s being straightforward but somewhat cumbersome.

2. Statement of the problem

Let $X=\left(X_{1}, \ldots, X_{k}\right)$ be a r.v. in $R_{k}, k>1$, with the distribution function (d.f.) $F(x), x=\left(x_{1}, \ldots, x_{k}\right)$, with zero mean and non-singular covariance matrix M. Furthermore let, for some $h_{0}>0$, the moment generating function (m.g.f.) of X,

$$
R(t)=\int_{r_{k}} e^{(t, x)} d F(x), \quad(t, x)=\sum_{j=1}^{k} t_{j} x_{j}
$$

exist for all $t=\left(t_{1}, \ldots, t_{k}\right)$ with $|t|=\left(\sum_{j=1}^{k} t_{j}^{2}\right)^{\frac{1}{2}}<h_{0}$
If $X^{(1)}, \ldots, X^{(n)}$ is a sequence of independent r.v.'s with the same d.f.'s as X, and $Y_{n}=(1 / \sqrt{n}) \sum_{v=1}^{n} X^{(\nu)}$, the problem is to estimate the probability $P\left(Y_{n} \in B\right)$, where B is a Borel set of a type specified in section 4. In Theorem $1, B$ is contained in a sphere with its center in the origin and of radius $R \leqslant \varepsilon_{0} \sqrt{n}$, and in Theorem $2, B$ is contained in the complement of such a sphere. In Theorems 3 and 4, I give applications to the d.f.'s of $\left|Y_{n}\right|$ and Y_{n} respectively.

