Communicated 7 June 1950 by F. CARLSON and J. MALMQUIST

On the analytic continuation of Eulerian products

By GERMUND DAHLQUIST

1. Introduction and summary

1.1. Let h(z) be an analytic function that is regular and takes the value 1 for z = 0 and has no limit-point of zeros or singularities in the region $|z| \le 1$. Consider the formal Eulerian product

$$f(s) = \prod_{p} h(p^{-s})$$
 (1.1)

where p runs through all prime numbers, and

 $s = \sigma + i \tau$

is a complex variable. We have, e.g.

$$h(z) = (1-z)^{-1}$$
 $f(s) = \zeta(s) = \sum_{n=1}^{\infty} n^{-s}$ (1.2)

$$h(z) = (1-z)$$
 $f(s) = \zeta(s)^{-1} = \sum_{n=1}^{\infty} \mu(n) \cdot n^{-s}$ (1.3)

$$h(z) = \prod_{\nu=1}^{k} (1-z^{\nu})^{-\beta_{\nu}} \qquad f(s) = \prod_{\nu=1}^{k} \zeta(\nu s)^{\beta_{\nu}} \qquad (1.4)$$

$$h(z) = e^{z}$$
 $f(s) = e^{P(s)}$ (1.5)

where

$$P(s) = \sum p^{-s} \tag{1.6}$$

p running through all primes.

The main purpose of this paper is to show¹

Theorem I. The imaginary axis is a natural boundary of f(s), except for the case in which the functions h(z) and f(s) have the form (1.4).

A wider class $\{h(z)\}$ is discussed in section 4.2., and in Part 5 the corresponding results are derived for functions of the form

$$\prod_p h(\chi(p) \cdot p^{-s}).$$

 $^{^{1}}$ I am indebted to Prof. F. CARLSON for suggesting the problem and for his valuable advice.