Communicated 9 April 1958 by HARALD CRAMÉR and LENNART CARLESON

Likelihood ratios of Gaussian processes¹

By T. S. PITCHER²

1. Introduction

Let x(t), $A \leq t \leq B$ be a real Gaussian stochastic process with autocorrelation function R(s,t). Each choice of a mean value function f(t) for the process establishes a measure m_f on the set of sample functions made into a measure space in the usual way [1]. In statistical applications one often wishes to know when m_f and m_g are totally singular and when they are absolutely continuous with respect to each other, i.e., when the likelihood ratio exists. In the latter case it is desirable to be able to compute $(d m_f/d m_g)(x)$ in terms of the sample function x(t).

The transformation on the space of sample functions which carries x(t) into x(t) + f(t) preserves measurability and carries m_g into m_{f+g} , i.e., if a(x) is a measurable function so is a(x+f) and we have

$$\int a(x) dm_{f+g} = \int a(x+f) dm_g.$$

The following lemma shows that it is sufficient to consider the case g=0.

Lemma 1.1. m_f and m_g are totally singular if and only if m_{f-g} and m_0 are. m_f is absolutely continuous with respect to m_g if and only if m_{f-g} is absolutely continuous with respect to m_0 and in this case $(d m_f/d m_g)(x) = (d m_{f-g}/d m_0)(x-g)$.

Proof. If $m_f(A) = 1$ and $m_g(A) = 0$ then $m_{f-g}(A+g) = 1$ and $m_0(A+g) = 0$ which proves the first assertion. If $d m_f/d m_g$ exists then

$$\int a(x) \frac{dm_f}{dm_g}(x+g) dm = \int a(x-g) \frac{dm_f}{dm_g}(x) dm_g = \int a(x-g) dm_f = \int a(x) dm_{f-g}(x) dm_{f-g}(x) dm_g = \int a(x) dm_f dm_g(x) dm_f = \int a(x) dm_f dm_g(x) dm_$$

which proves the second assertion.

From now on we shall assume that R is continuous and bounded, and that the process is separable. We will write m for m_0 , $m_f \parallel m$ if m_f and m are totally singular, and $m_f \equiv m$ if m_f and m are mutually absolutely continuous.

Lemma 1.2. If A and B are finite x(t) is in L_2 with m probability one. If f is not in L_2 , $m_f \parallel m$.

¹ The research in this paper was supported jointly by the U.S. Army, U.S. Navy, and U.S. Air Force under contract with the Massachusetts Institute of Technology.

² Staff Member, Lincoln Laboratory, Massachusetts Institute of Technology.