A remark on a theorem by Frostman

By Lars Lithner

The origin of this remark is a lecture held by Frostman in Helsinki 1957 [2].
Let us introduce some definitions and notations.
Let K be an arbitrary compact set in the euclidean space R^{n} and let α be a number such that $0<\alpha<n$. Put

$$
\|\mu\|_{\alpha}^{2}=\iint \frac{d \mu(x) d \mu(y)}{|x-y|^{n-\alpha}}
$$

where μ is a distribution of mass in R^{n} and where x and y denote points in $R^{n}, x=$ $\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$.
A is the set of all positive distributions of unit mass on K, that is,

$$
\mu \geqslant 0, \quad \mu(K)=1, \quad \mu\left(R^{n}-K\right)=0
$$

Let $C_{\alpha}(K)$ be the capacity of K of order α

$$
C_{\alpha}(K)=\frac{1}{\inf _{\mu \in A}\|\mu\|_{\alpha}}
$$

It is well known that if $\mathrm{C}_{\alpha}(K)>0$ then there exists a uniquely determined distribution μ_{α} in A that satisfies

$$
\left\|\mu_{\alpha}\right\|_{\alpha}=\inf _{\mu_{\in} A}\|\mu\|_{\alpha} .
$$

μ_{α} is called the equilibrium distribution of order α on K. Frostman [2] has set the problem whether these equilibrium distributions vary continuously with α or not. Or, if $\alpha \searrow \beta$ (\searrow means "tends non-increasingly to"), is it then true that μ_{α} converges towards a uniquely determined limit? (Convergence here in the weak sense, that is, $\mu_{\alpha} \rightarrow \mu$ is equivalent to $\int f d \mu_{\alpha} \rightarrow \int f d \mu$ for all continuous functions f with compact supports.)

If $C_{\beta}(K)>0$, the answer is yes. The limit in this case is μ_{β} which is easy to prove [2]. On the other hand, if $C_{\beta}(K)=0, C_{\alpha}(K)>0$ for $\alpha>\beta$, then the problem is not solved but for special cases. Frostman treats such a special case in [2] namely the case that $\alpha \downarrow 1$ and that K is a curve in the plane ($n=2$) which is rectifiable. He proves that in this case $\mu_{\alpha} \rightarrow \mu_{0}$ where μ_{0} is the distribution in A for which the mass which is situated on an are is proportional to the lenght of that are.

