Communicated 3 June 1959 by Otto Frostman

A remark on a theorem by Frostman

By LARS LITHNER

The origin of this remark is a lecture held by Frostman in Helsinki 1957 [2]. Let us introduce some definitions and notations.

Let K be an arbitrary compact set in the euclidean space R^n and let α be a number such that $0 < \alpha < n$. Put

$$\|\mu\|_{\alpha}^{2} = \int \int \frac{d\mu(x) d\mu(y)}{|x-y|^{n-\alpha}}$$

where μ is a distribution of mass in \mathbb{R}^n and where x and y denote points in \mathbb{R}^n , $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n)$.

A is the set of all positive distributions of unit mass on K, that is,

$$\mu \ge 0$$
, $\mu(K) = 1$, $\mu(R^n - K) = 0$.

Let $C_{\alpha}(K)$ be the capacity of K of order α

$$C_{\alpha}(K) = \frac{1}{\inf_{\mu \in A} \|\mu\|_{\alpha}}.$$

It is well known that if $C_{\alpha}(K) > 0$ then there exists a uniquely determined distribution μ_{α} in A that satisfies

$$\|\mu_{\alpha}\|_{\alpha}=\inf_{\mu\in A}\|\mu\|_{\alpha}.$$

 μ_{α} is called the equilibrium distribution of order α on K. Frostman [2] has set the problem whether these equilibrium distributions vary continuously with α or not. Or, if $\alpha \searrow \beta$ (\searrow means "tends non-increasingly to"), is it then true that μ_{α} converges towards a uniquely determined limit? (Convergence here in the weak sense, that is, $\mu_{\alpha} \to \mu$ is equivalent to $\int f d\mu_{\alpha} \to \int f d\mu$ for all continuous functions f with compact supports.)

If $C_{\beta}(K) > 0$, the answer is yes. The limit in this case is μ_{β} which is easy to prove [2]. On the other hand, if $C_{\beta}(K) = 0$, $C_{\alpha}(K) > 0$ for $\alpha > \beta$, then the problem is not solved but for special cases. Frostman treats such a special case in [2] namely the case that $\alpha \setminus 1$ and that K is a curve in the plane (n=2) which is rectifiable. He proves that in this case $\mu_{\alpha} \to \mu_{0}$ where μ_{0} is the distribution in A for which the mass which is situated on an arc is proportional to the length of that arc.