ARKIV FÖR MATEMATIK Band 5 nr 29

The Frobenius-Nirenberg theorem

By Lars Hörmander

The extension of the classical Frobenius theorem given by Nirenberg [5], combined with the Poincaré lemma for the operators d and $\bar{\partial}$, gives conditions on a first order system of differential equations

$$
\begin{equation*}
P_{j} u=f_{j}, j=1, \ldots, N \tag{1}
\end{equation*}
$$

for one unknown, which guarantee the existence of local solutions when $f=$ $\left(f_{1}, \ldots, f_{N}\right)$ satisfies the obvious integrability conditions. In fact, using the classical Frobenius theorem and the theorem of Newlander and Nirenberg [4], Nirenberg determined when it is possible to reduce (1) by a change of variables to a system of equations where each P_{j} is either $\partial / \partial x^{j}$ or $\partial / \partial x^{j}+i \partial / \partial x^{j+1}$ for some j. Now Kohn [3] has given a proof of the Newlander-Nirenberg theorem which is based on L^{2} estimates. We shall show here that a modified form of his approach leads to a direct proof of existence theorems for the system of equations (1). These results are global and they require only very light smoothness assumptions on the coefficients.

Le $P_{j}, j=1, \ldots, N$, be first order differential operators in an open set $\Omega \subset \mathbf{R}^{n}$,

$$
P_{j}=\sum_{k=1}^{n} a_{j}^{k} \partial / \partial x_{k}+a_{j}^{0}, j=1, \ldots, N .
$$

(No additional difficulty arises if Ω is a manifold and instead of the operators $\left(P_{1}, \ldots, P_{N}\right)$ we have a first order differential operator P between two complex vector bundles over Ω, with fibers of dimension 1 and N respectively. However, this more general framework would make the notations somewhat heavier.) We denote the principal parts by p_{j},

$$
p_{j}=\sum_{k=1}^{n} a_{j}^{k} \partial / \partial x_{k},
$$

and we write \bar{p}_{j} for the operator obtained by complex conjugation of the coefficients.

Since equations of the form (1) allow us to obtain additional first order equations by forming brackets,

$$
\left[P_{j}, P_{k}\right] u=\left(P_{j} P_{k}-P_{k} P_{j}\right) u=P_{j} f_{k}-P_{k} f_{j}
$$

