1.67 04 1 Communicated 22 February 1967 by E. HILLE

On absolute convergence of Fourier series

By MASAKO IZUMI and SHIN-ICHI IZUMI

§ 1. Let f be an integrable function on $(0, 2\pi)$ and periodic with period 2π , and its Fourier series be

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx).$$

If $\sum_{n=1}^{\infty} (|a_n| + |b_n|) < \infty$, then we say that the Fourier series of f converges absolutely and we write $f \in A$. If $f \in A$, then f must be bounded and continuous. We define the modulus of continuity of f by

We define the modulus of continuity of f by

$$\omega(\delta; f) = \sup_{|x-x'| \leq \delta} |f(x) - f(x')|$$

and the integrated modulus of continuity of f by

$$\omega_p(\delta;f) = \sup_{0 < h \leq \delta} \left(\int_0^{2\pi} \left| f(x+h) - f(x) \right|^p dx \right)^{1/p}$$

for $p \ge 1$. It is known that $\omega_p(\delta; f) \le \omega(\delta; f)$ and $\lim_{p \to \infty} \omega_p(\delta; f) = \omega(\delta; f)$.

Concerning absolute convergence of Fourier series there are two famous theorems, one is due to S. Bernstein and the other to A. Zygmund.

Bernstein's theorem ([1], p. 241; [2], p. 154) reads as follows:

Theorem I. If
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \omega\left(\frac{1}{n}; f\right) < \infty$$

then $f \in A$.

This was generalized by O. Szász ([2], p. 155) in the following form:

Theorem II. If $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \omega_2\left(\frac{1}{n}; f\right) < \infty$,

then $f \in A$.

Zygmund's theorem ([1], p. 242; [2], p. 160)¹ reads as follows.

¹ The condition of this form was first formulated by E. Hille and J. D. Tamarkin [3].