High submodules and purity

By Bo T. Stenström

1. Introduction

The N-high subgroups of an abelian group G were defined by Irwin [5] as maximal subgroups having zero intersection with the given subgroup N of G. In this note we extend some well-known relations between neat and N-high subgroups ([2], § 28 and [4], p. 327) to abelian categories and in particular to modules over general rings. As an application we will generalize a characterization of intersections of neat subgroups, due to Rangaswamy [7]. The term "high" will here be used in a sense more general than that it has in [5].

Notation. A is an abelian category in which every object M has an injective envelope E(M). For any subobject L of M we consider E(L) as a well-defined subobject of E(M).

2. High subobjects

Let M be an object in \mathcal{A} with a given subobject K. A subobject L of M is called K-high if $L \cap K = 0$ and L is maximal with respect to this. K-high subobjects do exist for any K ([3], p. 360). We obviously have

Proposition 1. A subobject L of M is K-high if and only if the composed morphism $K \rightarrow M \rightarrow M/L$ is an essential monomorphism.

Corollary. If L is K-high in M, then

- (i) L+K is essential in M.
- (ii) $E(M) = E(L) \oplus E(K)$.

The K-high subobjects of M may be described in terms of injective envelopes, as was done in [5] and [6] for abelian torsion groups.

Proposition 2. The K-high subobjects of M are just the intersections of M with complementary summands of E(K) in E(M).

Proof. If L is K-high, then $E(M) = E(L) \oplus E(K)$ by the corollary, and $L = E(L) \cap M$ since also $E(L) \cap M \cap K = 0$. Conversely, suppose $E(M) = E(K) \oplus H$. Then $H \cap M \cap K = 0$, and if L is K-high in M with $L \supset H \cap M$, then $E(L) \supset E(H \cap M) = H$. Clearly it follows that E(L) = H, and $H \cap M = E(L) \cap M = L$ is K-high.