# ARKIV FÖR MATEMATIK Band 2 nr 21 

## A note on the constant of Koebe

By Bengt J. Andersson

Let $S$ be the class of analytic functions $w(z)=a_{1} z+a_{2} z^{2}+\cdots$ that are schlicht in the unit circle $\gamma:|z|<1$. The function $w(z)$ maps $\gamma$ on an open and simply connected domain $D_{w}$. We define

$$
d_{w}=\frac{1}{\left|a_{1}\right|} \operatorname{Inf}_{w \oplus D_{w}}|w|, \quad M_{w}=\frac{1}{\left|a_{1}\right|} \operatorname{Sup}_{w \in D_{w}}|w| .
$$

It is wellknown that $d_{w \geq 1}$ (Koebe's constant), this limit being the best possible for $\boldsymbol{M}_{w} \leq \infty$. Here we shall determine a stronger limit that depends on $M_{w}$.

Theorem. Let $w(z) \in S$. If $M_{w \leq M}$

$$
\begin{equation*}
d_{w} \geq 2 M^{2}\left[1-\frac{1}{2 M}-\sqrt{1-\frac{1}{M}}\right] . \tag{1}
\end{equation*}
$$

It is allowed to put $w^{\prime}(0)=a_{1}=1$. Let $w_{0}(z)=\alpha_{1} z+\alpha_{2} z^{2}+\cdots$ be a function in $S$ that maps $\gamma$ on the circle $|w|<M$, slit along the segment $\left(d_{w}, M\right)$ of the real positive axis. The inverse functions of $w(z)$ and $w_{0}(z)$ are $z(w)$ and $z_{0}(w)$ : $z^{\prime}(0)=1, z_{0}^{\prime}(0)=\alpha_{1}^{-1}$. The harmonic functions

$$
\psi(w)=\log \left|\frac{w}{M z(w)}\right| \quad \text { and } \quad \psi_{0}(w)=\log \left|\frac{w}{M z_{0}(w)}\right|
$$

are regular and $\leq 0$ in $D_{w}$ and $D_{w_{0}}$ respectively. Any circle $|w|=r, d_{w} \leq r \leq M$ contains at least one point $w \nsubseteq D_{w}$. Further, if $w$ approaches a point $w^{\prime}$ on the boundary of $D_{w}$ we get

$$
\overline{\lim } \psi(w) \leq \log \frac{\left|w^{\prime}\right|}{M}=\psi_{0}\left(\left|w^{\prime}\right|\right)
$$

and $\psi_{0}(w)$ has non-negative derivatives along the inner normals of the segment ( $d_{w}, M$ ). Then all conditions are satisfied for applying a lemma of Beurling (1) that solves the problem. From this lemma we get $\psi_{0}(0) \geq \psi(0)$

