Communicated 26 November 1952 by F. Carlson

A note on the constant of Koebe

By BENGT J. ANDERSSON

Let S be the class of analytic functions $w(z) = a_1 z + a_2 z^2 + \cdots$ that are schlicht in the unit circle γ : |z| < 1. The function w(z) maps γ on an open and simply connected domain D_w . We define

$$d_w = \frac{1}{|a_1|} \inf_{w \in D_w} |w|, \qquad M_w = \frac{1}{|a_1|} \sup_{w \in D_w} |w|.$$

It is wellknown that $d_w \ge \frac{1}{4}$ (Koebe's constant), this limit being the best possible for $M_w \le \infty$. Here we shall determine a stronger limit that depends on M_w .

Theorem. Let $w(z) \in S$. If $M_w \le M$

(1)
$$d_w \ge 2 M^2 \left[1 - \frac{1}{2M} - \sqrt{1 - \frac{1}{M}} \right].$$

It is allowed to put $w'(0) = a_1 = 1$. Let $w_0(z) = \alpha_1 z + \alpha_2 z^2 + \cdots$ be a function in S that maps γ on the circle |w| < M, slit along the segment (d_w, M) of the real positive axis. The inverse functions of w(z) and $w_0(z)$ are z(w) and $z_0(w)$: z'(0) = 1, $z'_0(0) = \alpha_1^{-1}$. The harmonic functions

$$\psi\left(w\right) = \log\left|\frac{w}{Mz\left(w\right)}\right|$$
 and $\psi_{0}\left(w\right) = \log\left|\frac{w}{Mz_{0}\left(w\right)}\right|$

are regular and ≤ 0 in D_w and D_{w_0} respectively. Any circle |w| = r, $d_w \leq r \leq M$ contains at least one point $w \notin D_w$. Further, if w approaches a point w' on the boundary of D_w we get

$$\overline{\lim} \ \psi (w) \leq \log \ \frac{|w'|}{M} = \psi_0 (|w'|)$$

and $\psi_0(w)$ has non-negative derivatives along the inner normals of the segment (d_w, M) . Then all conditions are satisfied for applying a lemma of Beurling (1) that solves the problem. From this lemma we get $\psi_0(0) \ge \psi(0)$