Fractional categories

By Gert Almkvist

Introduction

In this paper we study the "localization" of a category C with respect to certain subcategories S. This is done by a category of "right fractions", CS^{-1} and a functor $\phi: C \to CS^{-1}$. In § 1 conditions for the existence of CS^{-1} are given and it turns out that ϕ is left exact.

In § 2 the existence of left adjoint * ϕ of ϕ is discussed. If * ϕ exists, a full subcategory \check{C} of C is defined. \check{C} consists of those objects A such that * $\phi \cdot \phi(A) \approx A$. It follows that \check{C} is equivalent of CS^{-1} .

If in the dual case (i.e. the right adjoint ϕ^* exists) ϕ is exact and C is a category of set-valued presheaves then \check{C} is a category of sheaves for some Grothendieck topology. Furthermore the imbedding functor $\check{C} \to C$ has a left adjoint which is the associated sheaf functor.

Section 3 is devoted to a study of the functional properties of CS^{-1} , i.e. its behaviour under functors and under change of S.

In § 4 properties inherited from C to CS^{-1} are studied under various conditions on S. If ϕ^* exists, it follows that if C is abelian (a topos), then CS^{-1} is also.

In § 5 some examples are given when C is a special abelian category, in particular when C is the category of modules over a commutative ring.

Notation and generalities

All categories in this paper are sets. Let \mathcal{U} be a fixed universe (see [10], Exp. VI). If nothing else is stated a category \mathcal{C} will mean a \mathcal{U} -category, i.e. for any pair of objects A, B in C there is a bijection from $\operatorname{Hom}_{\mathbb{C}}(A, B)$ onto a set belonging to \mathcal{U} . $\mathcal{E}ns$ is the category of sets of cardinality less than $\operatorname{Card}(\mathcal{U})$. A category \mathcal{C} is small if the set underlying \mathcal{C} is in $\mathcal{E}ns$.

If C is a category we denote the set of objects of C by C_0 and identify C_0 with the identities of C. If $F: C \to \mathcal{D}$ is a functor, then a functor $^*F: \mathcal{D} \to C$ is a left adjoint of F (and F is a right adjoint of *F) if there is a functor isomorphism $\operatorname{Hom}_{\mathbb{C}}(^*F\cdot,\cdot)\approx \operatorname{Hom}_{\mathbb{D}}(\cdot,F\cdot)$. Let \mathcal{J} be a small category and let $C: C \to Hom(\mathcal{J},C)$ denote the functor that maps each $A \in C_0$ onto the constant functor C_A defined by $C_A(\alpha) = 1_A$ for all $\alpha \in \mathcal{J}$. C maps the morphisms of C in the obvious way.

If C has a right adjoint, $C^* = \lim_{\leftarrow} : Hom(\mathcal{J}, C) \to C$ then C is said to have $\mathcal{J}\text{-}\lim_{\leftarrow} .$ In particular if C has $\mathcal{J}\text{-}\lim_{\leftarrow} .$ for all small (finite) \mathcal{J} , then C has (finite) $\lim_{\leftarrow} .$ * $C = \lim_{\leftarrow} .$ is defined dually.