On the partial differential equation $u_{x}^{2} u_{x x}+2 u_{x} u_{y} u_{x y}+u_{y}^{2} u_{y y}=0$

By Gunnar Aronsson

1. Introduction

This papér treats various aspects of the partial differential equation

$$
\begin{equation*}
\left(\frac{\partial u}{\partial x}\right)^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial^{2} u}{\partial x \partial y}+\left(\frac{\partial u}{\partial y}\right)^{2} \frac{\partial^{2} u}{\partial y^{2}}=0 . \tag{I}
\end{equation*}
$$

This equation was derived in [1] where an extension problem was studied, and it turned out that (1) is closely connected to this extension problem (Theorems 6, 7 and 8 in [1]). The equation is quasi-linear and parabolic ($A C-B^{2}=0$), and is not of any classical type. The results from [1] will be used very little in this paper. As far as the author knows, the equation (1) has not been treated before, apart from the paper [1].

Let $u(x, y)$ be a solution of (1) and let C be a trajectory of the vector field grad u. Then it is proved in Section 2 that C is either a convex curve or a straight line, and this result, together with a formula for the curvature of C, is fundamental for the later sections.

In Section 3 we consider two particular classes of solutions to (1).
Section 4 is devoted to a discussion of the regularity of solutions to (1). It turns out that a solution for which the trajectories of grad u are convex curves, is infinitely differentiable.

In Section 5 we consider some differential-geometric aspects of (1).
Section 6 contains an estimate for $|\operatorname{grad} u|$. A consequence of this estimate is that a nonconstant solution of (1) has no stationary points.

In Section 7 we consider solutions of (1) outside a compact set and solutions in the whole plane. The latter ones turn out to be linear functions only.

In Section 8 we consider the behaviour of $|\operatorname{grad} u|$ near the boundary of a region.
Section 9, finally, contains a few results on the Dirichlet problem for (1).
In this paper, we will only consider classical solutions of (1), that is, solutions in C^{2}. We will not discuss extensions of the results to the case of more than two independent variables.

2. Some preliminary considerations

A lemma on the curvature of a streamline

We introduce the notation

$$
A(\Phi) \equiv \Phi_{x}^{2} \Phi_{x x}+2 \Phi_{x} \Phi_{y} \Phi_{x y}+\Phi_{y}^{2} \Phi_{y y}
$$

It is easy to see that

$$
\begin{equation*}
A(\Phi)=\frac{1}{2} \operatorname{grad}\left\{(\operatorname{grad} \Phi)^{2}\right\} \cdot \operatorname{grad} \Phi . \tag{2}
\end{equation*}
$$

