On extensions of Lipschitz functions

By JAN-ERIK BJÖRK

Let X be a compact metric space with metric d. A real-valued function f on X is Lipschitz if there exists a constant K such that $|f(x) - f(y)| \leq Kd(x, y)$ holds for all points $x, y \in X$. The class of functions Lipschitz on X is an algebra Lip (X, d). On Lip (X, d) we can introduce a norm in the following way. Let $f \in Lip(X, d)$. We put $||f||_c = \sup_{x \in X} |f(x)| \text{ and } ||f||_d = \sup \{|f(x) - f(y)|/d(x, y)|x, y \in X \text{ and } x \neq y\}.$ Finally we put $||f|| = ||f||_c + ||f||_d$. It is easily seen that Lip (X, d) is a Banach algebra with this norm. A general investigation of Lip (X, d) is given in [1]. We shall freely use results and notations from that paper. In this paper our main result is the following: Let F be a closed subset of a compact metric space X with metric d. Let G be a closed set contained in F. Let $f \in \text{Lip}(F, d)$ be such that $\lim_{x \to a} |f(x) - f(y)|/d(x, y) = 0$ as d(x, G) and d(y, G) tend to zero. Then there exists $H \in \text{Lip}(X, d)$ such that H = f on F and $\lim |H(x) - H(y)|/d(x, y) = 0$ as d(x, G) and d(y, G) tend to zero. This result answers a question raised in [2] (see IV, Miscellaneous problems no. 8, p. 355). For the result above implies the following: Let X be a compact metric space with metric d. Let Lip (X, d) be the Banach algebra of functions Lipschitz on X. Let I(F)be the ideal of functions vanishing on a closed set F contained in X. Let G be a closed subset of F. Let J(G) be the smallest closed ideal with hull G. Let u be a continuous linear on I(F) which vanishes on J(G). Then u can be extended to a continuous linear form on I(G) which vanishes on J(G).

Remark. In [1] it is shown that J(G) consists of all functions $f \in \text{Lip}(X, d)$ such that $f \in I(G)$ and $\lim_{x \to 1} |f(x) - f(y)|/d(x,y) = 0$ as d(x, G) and d(y, G) tend to zero. In the proof of Theorem 1 we shall need the following result from [3].

Proposition 1. Let X be a metric space with metric d. Let F be a closed subset of X. Let f be a bounded function Lipschitz on F, i.e. $||f||_c = \sup_{x \in X} ||and|||f||_d = \sup \{|f(x) - f(y)|/d(x, y)|x, y \in F \text{ and } x \neq y\}$ are finite. Then there exists a function H on X such that H = f on F and $H \in \text{Lip}(X, d)$ with $||H||_d = ||f||_d$ and $||H||_c = ||f||_c$.

Proof. Let us put $H_1(x) = \sup_{y \in F} \{f(y) - ||f||_d d(x, y)\}$. It is not hard to see that $H_1 = f$ on F and H_1 is Lipschitz on X with $||H_1||_d = ||f||_d$. Now we only have to put $H(x) = H_1(x)$ if $||H_1(x)| \leq ||f||_c$ and $H(x) = ||f||_c$ if $H_1(x) > ||f||_c$ and $H(x) = - ||f||_c$ if $H_1(x) < - ||f||_c$.

In the proof of Theorem 1 the following lemma will be useful.

Lemma 1. Let F and G be two closed subsets of a metric space X with metric d, such that if $x \in F$ and $y \in G$ then there exists $z \in F \cap G$ with $4d(x, y) \ge d(x, z)$ and $4d(x, y) \ge d(y, z)$. Let $f \in \text{Lip}(F, d)$ and $g \in \text{Lip}(G, d)$ be such that f = g on $F \cap G$. If we put h = f on F and h = g on G then $h \in \text{Lip}(F \cap G, d)$ and $||h||_d \le 4(d||f||_d + ||g||_d)$.