On the constant in Hölder's inequality

By Sven H. Hilding

With 5 figures in the text

It is well known that the ${ }^{\prime}=$ ' in the so-called Hölder's inequality in one of its forms

$$
\begin{equation*}
\sum a_{n} b_{n} \leq\left(\sum a_{n}^{p}\right)^{\frac{1}{p}}\left(\sum b_{n}^{q}\right)^{\frac{1}{q}} \quad\left(\frac{1}{p}+\frac{1}{q}=1\right) \tag{1a}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{0}^{1} f(x)^{r} g(x)^{1-r} d x \leq\left(\int_{0}^{1} f(x) d x\right)^{r}\left(\int_{0}^{1} g(x) d x\right)^{1-r} \quad(0<r<1) \tag{lb}
\end{equation*}
$$

occurs only if

$$
a_{n}^{p}=A \cdot b_{n}^{q} \quad \text { for all } n
$$

or

$$
f(x) \equiv g(x)
$$

If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ (or $f(x)$ and $\left.g ' x\right)$ are subjected to some restrictive conditions that exclude the proportionality just mentioned, then one can have only ' $<$ '.

We shall consider the most general form of Hölder's inequality, which includes (1 a) and (1 b), and study the value of the Lebesgue-Stieltjes integral

$$
\begin{equation*}
I_{r}=\int_{E}\left(f^{\prime} x\right)^{r}\left(g^{\prime} x\right)^{1-r} d \varphi(x) \quad(0 \leq r \leq 1) \tag{1}
\end{equation*}
$$

where $f(x)$ and $g(x)$ are non-negative functions and $\varphi(x)$ an increasing function on the set E. Hölder's inequality then takes the form

$$
\begin{equation*}
I_{r} \leq \theta_{r} \cdot I_{1}^{r} \cdot I_{0}^{1-r} \quad\left(0 \leq \theta_{r} \leq 1\right) \tag{2}
\end{equation*}
$$

In the following we shall assume throughout that the functions $f(x)$ and $g(x)$ are normalized in such a way that

$$
I_{1}=I_{0}=1
$$

which is no real restriction of the study.

