A multi-dimensional prediction problem

By Murray Rosenblatt *

1. Introduction

The problem of linear prediction for a weakly stationary stochastic process has been discussed in considerable detail by Kolmogorov [3], Wiener [6] and others. Recently there has been increasing interest in the linear prediction problem for a vector-valued weakly stationary process. Aspects of this problem have been treated in a heuristic manner by Whittle [5] and analytically by Wiener [7]. The discussion in this paper is more probabilistic in orientation and some attention is devoted to the problem of computing the prediction error covariance matrix in a one-step prediction when the process is a two-vector.

2. Preliminary discussion

Let

$$
x_{t}=\left(\begin{array}{c}
1 x_{t} \\
\vdots \\
m x_{t}
\end{array}\right), \quad t=\cdots,-1,0,1, \ldots, E x_{t} \equiv 0
$$

be an m-vector weakly stationary stochastic process. By this we mean that the sequence of covariance matrices ($m \times m$)

$$
r_{t, \tau}=E x_{t} x_{\tau}^{\prime}=r_{t-\tau}\left({ }^{1}\right)
$$

depends only on the difference $t-\tau$. It is then well known that the sequence of covariance matrices r_{t} can be represented as the Fourier-Stieltjes coefficients

$$
\begin{equation*}
r_{t}=\int_{-\pi}^{\pi} e^{i t \lambda} d F(\lambda) \tag{1}
\end{equation*}
$$

of a matrix-valued ($m \times m$) non-decreasing function $F(\lambda)$. The function $F(\lambda)$ is said to be non-decreasing since for any given m-vector v

$$
v^{\prime} \Delta F(\lambda) v=v^{\prime}\left[F\left(\lambda_{2}\right)-F\left(\lambda_{1}\right)\right] v \geq 0
$$

[^0]
[^0]: * Indiana University and New York University. Written for the David Taylor Model Basin under ONR contract Nonr 285 (17).
 ${ }^{1}$ Given the matrix A, A^{\prime} denotes the conjugated transpose of the matrix A.

