On linear recurrences with constant coefficients

By Trygve Nagell

1.-An arithmetical function $A(n)=A_{n}$ of n may be defined by recursion in the following way: The value of A_{n} is defined for $n=0,1,2, \ldots, m-1$, and there is given a rule indicating how the value of A_{m+n} may be determined when the values of A_{μ} are known for $\mu=n, n+1, n+2, \ldots, n+m-2, n+m-1, n$ being an integer $\geqq 0$.

The infinite sequence

$$
A_{0}, A_{1}, A_{2}, A_{3}, \ldots, A_{n}, \ldots
$$

thus defined is said to be a recurrent sequence. We denote it by $\left\{A_{n}\right\}$. The rule of recursion has often the shape of a recursive formula.

For instance, the function $A_{n}=n!$ satisfies the recursive formula

$$
\begin{equation*}
A_{n+1}=(n+1) A_{n} \tag{1}
\end{equation*}
$$

and the initial condition $A_{0}=1$.
The general solution of the recursive formula

$$
\begin{equation*}
A_{n+1}=2 A_{n} \tag{2}
\end{equation*}
$$

is obviously

$$
A_{n}=2^{n} A_{0}
$$

The arithmetical function A_{n} satisfying the recursive formula

$$
\begin{equation*}
A_{n+2}=\sqrt{A_{n+1} A_{n}} \tag{3}
\end{equation*}
$$

is a function of n, A_{0} and A_{1}.
Another example is the function A_{n} defined by the recursive formula

$$
\begin{equation*}
A_{n+2}=A_{n+1}+A_{n} \tag{4}
\end{equation*}
$$

and the initial conditions $A_{0}=A_{1}=1$. In this case we get the following series:

$$
1,1,2,3,5,8,13,21, \ldots
$$

the so-called Fibonacci numbers.
2.-In Algebra and in Number Theory we often have to do with linear recurrences, that is to say recursive formulae of the type

$$
\begin{equation*}
A_{m+n}=a_{1} A_{m+n-1}+a_{2} A_{m+n-2}+\cdots+a_{m} A_{n}+b \tag{5}
\end{equation*}
$$

