ARKIV FÖR MATEMATIK Band $3 \mathbf{n r} 25$

A note on an inequality

By Bo Kjellberg

The following is a supplement to an earlier paper [9], where we have given a "triangular condition" which the exponents must fulfill in order that an inequality

$$
\begin{equation*}
\int_{0}^{\infty} x^{\alpha}|f(x)|^{\beta} d x \leq K\left(\left.\int_{0}^{\infty} x^{\alpha_{1}}|t|\right|^{\beta_{1}} d x\right)^{\alpha_{1}}\left(\int_{0}^{\infty} x^{\alpha_{2}}|f|^{\beta_{2}} d x\right)^{\alpha_{2}} \tag{1}
\end{equation*}
$$

should hold true. A number of authors have discussed the best possible value for K.

In this note we observe that the simple method we used in a special case in the cited note [9] gives-in the general case also-the extremal function and so the value of K.

By the transformations $x \rightarrow x^{p},|f| \rightarrow x^{q}|f|^{r}$ we first bring (1) into the form

$$
\begin{equation*}
\int_{0}^{\infty}|f| d x \leq K\left(\alpha, \beta_{1}, \beta_{2}\right)\left(\int_{0}^{\infty} x^{\alpha}|f|^{\beta_{2}} d x\right)^{\alpha_{1}}\left(\int_{0}^{\infty} x^{\alpha}|f|^{\beta_{2}} d x\right)^{\alpha_{1}} . \tag{2}
\end{equation*}
$$

For brevity we here do not consider the simplest case $\beta_{1}=\beta_{2}$. To satisfy the conditions in [9] we must have $\alpha \geq 0$; but $\alpha=0$ corresponds to Hölder's inequality and thus is of no interest in this connection.

Set $\varphi=|f|$ and form

$$
\begin{equation*}
L(\varphi)=\varphi-\lambda x^{\alpha} p^{\beta_{1}}-\mu x^{\alpha} \phi^{\beta_{2}}, \tag{3}
\end{equation*}
$$

where λ and μ are positive parameters at our disposal. Take the maximum of $L(\varphi)$ for fixed x and variable φ; let it be attained for $\varphi=\varphi_{0}(x)$. If we put $\int_{a}^{b} x^{\alpha} \varphi_{0}^{\beta_{2}} d x=A_{1}$ and $\int_{a}^{b} x^{\alpha} \varphi_{0}^{\beta_{2}} d x=A_{2}$, it is evident that among all functions φ giving the same values to these integrals the function $\varphi_{0}(x)$ gives the maximum of $\int_{a} \varphi d x$. The maximum of $L(\varphi)$ for fixed x is either $0=L(0)$ or positive; in the latter case φ_{0} is a solution of the equation

$$
\begin{equation*}
1-\lambda \beta_{1} x^{\alpha} \varphi_{0}^{\beta_{1}-1}-\mu \beta_{2} x^{\alpha} \varphi_{0}^{\beta_{2}-1}=0 \quad \text { or } \quad \lambda \beta_{1} \phi_{0}^{\beta_{1}-1}+\mu \beta_{2} \varphi_{0}^{\beta_{2}-1}=x^{-\alpha} . \tag{4}
\end{equation*}
$$

