A theorem concerning the least quadratic residue and non-residue

By Lars Fjellstedt

The purpose of this paper is to prove the following
Theorem: Denote by $\psi^{*}(p ; 2)$ the least odd prime number which is quadratic non-residue modulo the prime p. Then for $p>p_{0}$

$$
\psi^{*}(p ; 2)<6 \cdot \log p
$$

Denote by $\pi^{*}(p ; 2)$ the least odd prime number which is quadratic residue modulo the prime p. Then for $p>p_{0}$

$$
\pi^{*}(p ; 2)<6 \cdot \log p
$$

We shall require the following result which we do not prove:
Lemma. If the system

$$
x \equiv b_{1}\left(\bmod m_{1}\right), \quad x \equiv b_{2}\left(\bmod m_{2}\right), \ldots, \quad x \equiv b_{k}\left(\bmod m_{k}\right), \quad b_{i} \geqq 0
$$

is solvable, its positive solutions are given by

$$
x=b_{1}+m_{1} t_{1}+\frac{m_{1} m_{2}}{d_{1}} t_{2}+\cdots+\frac{m_{1} m_{2} \cdots m_{k-1}}{d_{1} d_{2} \cdots d_{k-2}} t_{k-1}+\frac{m_{1} m_{2} \cdots m_{k}}{d_{1} d_{2} \cdots d_{k-1}} t
$$

where

$$
\begin{aligned}
d_{1}=\left(m_{1}, m_{2}\right), \quad & d_{i}=\left(\frac{m_{1} m_{2} \cdots m_{i}}{d_{1} \cdots d_{i-1}}, m_{i+1}\right), \quad i=2,3, \ldots, k-1 \\
& 0 \leqq t_{i}<\frac{m_{i+1}}{d_{i}}
\end{aligned}
$$

and $t \geqq 0$ an integer.
Proof of the theorem. If we assume $\psi^{*}(p ; 2)=p_{n}, p_{m}$ denoting the m th prime in the sequence $2,3,5,7, \ldots, p$ satisfies

$$
\begin{equation*}
\left(\frac{3}{p}\right)=\left(\frac{5}{p}\right)=\cdots=\left(\frac{p_{n-1}}{p}\right)=+1, \quad\left(\frac{p_{n}}{p}\right)=-1 \tag{1}
\end{equation*}
$$

