Communicated 9 February 1955 by OTTO FROSTMAN

On the uniform convexity of L^{p} and l^{p}

By Olof Hanner

CLARKSON defined in 1936 the uniformly convex spaces [2]. The uniform convexity asserts that there is a function $\delta(\varepsilon)$ of $\varepsilon > 0$ such that ||x|| = 1, ||y|| = 1, and $||x-y|| \ge \varepsilon$ imply $||\frac{1}{2}(x+y)|| \le 1-\delta(\varepsilon)$, where x and y are elements of the space. CLARKSON proved that the well-known spaces L^p and l^p are uniformly convex if p > 1. The purpose of this note is to give the best possible function $\delta(\varepsilon)$ for these spaces, i.e. to find for each p > 1 and $\varepsilon > 0$

$$\inf\left(1-\left\|rac{x+y}{2}
ight\|
ight)$$

under the conditions ||x|| = 1, ||y|| = 1, $||x - y|| \ge \varepsilon$. We need two inequalities, which are given in Theorem 1, formula (1). I have been informed that the left-hand side inequality of this formula was proved by BEURLING at a seminar in Uppsala in 1945, but it does not seem to be in print. The right-hand side inequality is proved by CLARKSON ([2] p. 400) and BOAS ([1] p. 305). We give here a reconstruction of BEURLING's proof and also for completeness a simple proof of the other inequality.

Let the functions in L^{p} be defined over $0 \le t \le 1$. The norm of x = x(t) is then given by

$$||x||^{p} = \int_{0}^{1} |x(t)|^{p} dt.$$

In l^p the norm of $x = (x_1, x_2, ...)$ is given by

$$||x||^p = \sum_{i=1}^{\infty} |x_i|^p.$$

Theorem 1. For p > 2 the following inequalities hold

$$(||x|| + ||y||)^{p} + |||x|| - ||y|||^{p} \ge ||x+y||^{p} + ||x-y||^{p} \ge 2 ||x||^{p} + 2 ||y||^{p}.$$
(1)

For 1 these inequalities hold in the reverse sense.

The equality sign holds for L^p [for l^p] in the left-hand side of (1) if and only if x=0, or y=0, or there is a number a>0 such that (x(t)-ay(t))(x(t)++ay(t))=0 for almost every t [such that $(x_i-ay_i)(x_i+ay_i)=0$ for every i], and in the right-hand side of (1) if and only if x(t)y(t)=0 for almost every t $[x_iy_i=0$ for every i].

239