On the uniform convexity of L^{p} and l^{p}

By Olof Hanner

Clarkson defined in 1936 the uniformly convex spaces [2]. The uniform convexity asserts that there is a function $\delta(\varepsilon)$ of $\varepsilon>0$ such that $\|x\|=1,\|y\|=1$, and $\|x-y\| \geqq \varepsilon$ imply $\left\|\frac{1}{2}(x+y)\right\| \leqq 1-\delta(\varepsilon)$, where x and y are elements of the space. Clarkson proved that the well-known spaces L^{p} and l^{p} are uniformly convex if $p>1$. The purpose of this note is to give the best possible function $\delta(\varepsilon)$ for these spaces, i.e. to find for each $p>1$ and $\varepsilon>0$

$$
\inf \left(1-\left\|\frac{x+y}{2}\right\|\right)
$$

under the conditions $\|x\|=1,\|y\|=1,\|x-y\| \geqq \varepsilon$. We need two inequalities, which are given in Theorem 1, formula (1). I have been informed that the left-hand side inequality of this formula was proved by Beurling at a seminar in Uppsala in 1945, but it does not seem to be in print. The right-hand side inequality is proved by Clarkson ([2] p. 400) and Boas ([1] p. 305). We give here a reconstruction of Beurling's proof and also for completeness a simple proof of the other inequality.

Let the functions in L^{p} be defined over $0 \leqq t \leqq 1$. The norm of $x=x(t)$ is then given by

$$
\|x\|^{p}=\int_{0}^{1}|x(t)|^{p} d t
$$

In l^{p} the norm of $x=\left(x_{1}, x_{2}, \ldots\right)$ is given by

$$
\|x\|^{p}=\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}
$$

Theorem 1. For $p>2$ the following inequalities hold

$$
\begin{equation*}
(\|x\|+\|y\|)^{p}+|\|x\|-\|y\||^{p} \geqq\|x+y\|^{p}+\|x-y\|^{p} \geqq 2\|x\|^{p}+2\|y\|^{p} \tag{1}
\end{equation*}
$$

For $1<p<2$ these inequalities hold in the reverse sense.
The equality sign holds for $L^{p}\left[\right.$ for $\left.l^{p}\right]$ in the left-hand side of (1) if and only if $x=0$, or $y=0$, or there is a number $a>0$ such that $(x(t)-a y(t))(x(t)+$ $+a y(t))=0$ for almost every t [such that $\left(x_{i}-a y_{i}\right)\left(x_{i}+a y_{i}\right)=0$ for every $\left.i\right]$, and in the right-hand side of (1) if and only if $x(t) y(t)=0$ for almost every $t\left[x_{i} y_{i}=0\right.$ for every i].

