Acta Math., 195 (2005), 267–285 © 2005 by Institut Mittag-Leffler. All rights reserved

Meromorphic Szegő functions and asymptotic series for Verblunsky coefficients

by

BARRY SIMON

California Institute of Technology Pasadena, CA, U.S.A.

1. Introduction

This paper is concerned with the spectral theory of orthogonal polynomials on the unit circle (OPUC) [16], [17], [15], [23], [7], [8] in the case of particularly regular measures. Throughout, we will consider probability measures on $\partial \mathbf{D} = \{z \mid |z|=1\}$ of the form

$$d\mu = w(\theta) \, \frac{d\theta}{2\pi} + d\mu_{\rm s},\tag{1.1}$$

where w obeys the Szegő condition, that is,

$$\int_0^{2\pi} \log(w(\theta)) \, \frac{d\theta}{2\pi} > -\infty. \tag{1.2}$$

In that case, the Szegő function is defined by

$$D(z) = \exp\left(\int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \log(w(\theta)) \frac{d\theta}{4\pi}\right).$$
(1.3)

Not only does w determine D, but D determines w, since $\lim_{r\uparrow 1} D(re^{i\theta}) \equiv D(e^{i\theta})$ exists for a.e. θ and

$$w(\theta) = |D(e^{i\theta})|^2. \tag{1.4}$$

Indeed, D is the unique function analytic on $\mathbf{D} = \{z \mid |z| < 1\}$ with D(0) > 0 and D non-vanishing on \mathbf{D} so that (1.4) holds.

Given $d\mu$, we let Φ_n be the monic orthogonal polynomial and $\varphi_n = \Phi_n / \|\Phi_n\|_{L^2(d\mu)}$. The Φ_n 's obey the Szegő recursion

$$\Phi_{n+1}(z) = z\Phi_n(z) - \bar{\alpha}_n \Phi_n^*(z), \qquad (1.5)$$

Supported in part by NSF Grant DMS-0140592 and in part by Grant No. 2002068 from the United States–Israel Binational Science Foundation (BSF), Jerusalem, Israel