Acta Math., 195 (2005), 253–264 © 2005 by Institut Mittag-Leffler. All rights reserved

Decay of correlations for Hénon maps

by

TIEN-CUONG DINH

Université Paris VI Paris, France

1. Introduction

Exponential mixing is an important statistical property in dynamics. It is often difficult to prove this non-linear property for a non-uniformly hyperbolic system. See Benedicks-Young [4], [5] and the references therein for the case of real Hénon maps. Here we will study a large class of polynomial automorphisms in \mathbf{C}^k . We note that exponential decay of correlations has been proved for polynomial-like maps and meromorphic maps in the case of large topological degree, which is the opposite of the invertible case (see [14], [8] and [9]).

Given a polynomial automorphism f of \mathbf{C}^k , we will extend it to a birational map of \mathbf{P}^k . We say that f is a regular automorphism in the sense of Sibony if the indeterminacy sets I_{\pm} of $f^{\pm 1}$ (i.e. the sets of points at infinity where the birational maps $f^{\pm 1}$ are not defined) satisfy $I_+ \cap I_- = \emptyset$. We recall here some properties of regular automorphisms (see [2], [1] and [13] for dimension 2 and [20] for $k \ge 2$). Note that when k=2, the regular automorphisms are finite compositions of generalized Hénon maps (see Friedland and Milnor [15]). As was shown in [15], these are the dynamically interesting polynomial automorphisms of \mathbf{C}^2 .

The indeterminacy sets I_{\pm} are contained in the hyperplane at infinity L_{∞} . When f is regular, there exists an integer s such that dim $I_{+}=k-1-s$ and dim $I_{-}=s-1$. We have $f(L_{\infty}\backslash I_{+})=I_{-}$ and $f^{-1}(L_{\infty}\backslash I_{-})=I_{+}$. Moreover, I_{-} is attractive for f, and I_{+} is attractive for f^{-1} . Let \mathcal{K}_{+} (resp. \mathcal{K}_{-}) denote the filled Julia set of f (resp. of f^{-1}), i.e. the set of points $z \in \mathbb{C}^{k}$ such that the orbit $(f^{n}(z))_{n \in \mathbb{N}}$ (resp. $(f^{-n}(z))_{n \in \mathbb{N}}$) is bounded in \mathbb{C}^{k} . Then \mathcal{K}_{\pm} are closed in \mathbb{C}^{k} and satisfy $\overline{\mathcal{K}}_{\pm} \cap L_{\infty} = I_{\pm}$. The open set $\mathbb{P}^{k} \backslash \overline{\mathcal{K}}_{+}$ (resp. $\mathbb{P}^{k} \backslash \overline{\mathcal{K}}_{-}$) is the immediate basin of I_{-} for f (resp. I_{+} for f^{-1}). If d_{+} and d_{-} are the algebraic degrees of f and f^{-1} , respectively, then $d_{+}^{s} = d_{-}^{k-s} > 1$. In particular, we have $d_{+} = d_{-}$ when k = 2s.

By T_{\pm} , we denote the Green currents of bidegree (1,1) associated to $f^{\pm 1}$ (see