Uniform growth of analytic curves away from real points

Rüdiger W. Braun, Reinhold Meise and B. Alan Taylor

1. Introduction

Let V be a one-dimensional analytic curve in $\{(t,s)\in \mathbb{C}^2: |s|<1\}$ such that the projection map $\pi(t,s)=s$ onto the second coordinate is proper on V. Then there is an integer ν such that, except over a discrete subset of |s|<1,

(1)
$$V = \{(t_j(s), s) : 1 \le j \le \nu, |s| < 1\};$$

that is, V is the zero set of the monic pseudopolynomial with coefficients analytic for |s| < 1,

$$F(t,s) = \prod_{j=1}^{\nu} (t - t_j(s)) = t^{\nu} + \sum_{j=0}^{\nu-1} a_j(s) t^j.$$

Each of the branches $t_j(s)$ then has a Puiseux series expansion about s=0 of the form

$$t_j(s) = t_j(0) + \sum_{k=1}^{\infty} d_{j,k} s^{k/N}$$

for some integer $N \ge 1$. Suppose that there is a constant C > 0 and a rational number r = p/q, $0 < p/q \le 1$, such that

$$|\operatorname{Im} t_j(s)| \le C|s|^{p/q}, \quad s \text{ real}, \ |s| < 1.$$

This condition implies that $t_j(0)$ is real and that the first fractional power k/N that has a nonzero coefficient $d_{j,k}$ in the series must satisfy $k/N \ge p/q$. Hence,

(2)
$$|t_i(s) - t_i(0)| \le C'|s|^{p/q}, \quad |s| < 1, \ 1 \le j \le \nu$$

for some constant C' which, a priori, depends on the curve V. We are going to prove that the constant can be chosen independent of the curve V, in the following sense.