Homogeneous Fourier multipliers of Marcinkiewicz type

Anthony Carbery and Andreas $Seeger(^1)$

1. Introduction

Let $m \in L^{\infty}(\mathbf{R}^2)$ be homogeneous of degree zero. Then m is almost everywhere determined by $h_{\pm}(\xi_1) = m(\xi_1, \pm 1)$. For $k \in \mathbb{Z}$ let $I_k = [2^{-k-1}, 2^{-k}] \cup [-2^{-k}, -2^{-k-1}]$ and let h_{\pm} and h_{\pm} satisfy the condition

(1.1)
$$\sup_{k \in \mathbf{Z}} \left(\int_{I_k} |sh'_{\pm}(s)|^r \frac{ds}{s} \right)^{1/r} < \infty.$$

Rubio de Francia posed the question whether a condition like (1.1) is sufficient to prove that m is a Fourier multiplier of $L^p(\mathbf{R}^2)$, 1 . An application of the $Marcinkiewicz multiplier theorem with <math>L^2$ -Sobolev hypotheses (cf. (1.3) and (1.5) below) and interpolation arguments already show that the answer is yes, provided r>2. Recently, Duoandikoetxea and Moyua [15] have shown that the same conclusion can be reached if r=2. On the other hand, since characteristic functions of halfspaces are Fourier multipliers of L^p , 1 , a simple averaging argument $shows that the condition <math>h' \in L^1$ implies L^p -boundedness for 1 . Our firsttheorem shows that the weaker assumption (1.1) with <math>r=1 implies boundedness in $L^p(\mathbf{R}^2)$, for 1 .

Theorem 1.1. Suppose that h_+ and h_- satisfy the hypotheses of the Marcinkiewicz multiplier theorem on the real line, that is

(1.2)
$$\sup_{k \in \mathbf{Z}} \int_{I_k} |dh_{\pm}(s)| \le A$$

 $^(^{1})$ The second author was supported in part by a grant from the National Science Foundation (USA).