A Carleman type theorem for proper holomorphic embeddings

Gregery T. Buzzard and Franc Forstneric

1. Introduction

We denote by **C** the field of complex numbers and by **R** the field of real numbers. To motivate our main result we recall the Carleman approximation theorem [4], [11]: For each continuous function $\lambda: \mathbf{R} \to \mathbf{C}$ and positive continuous function $\eta: \mathbf{R} \to (0, \infty)$ there exists an entire function f on **C** such that $|f(t) - \lambda(t)| < \eta(t)$ for all $t \in \mathbf{R}$. If λ is smooth, we can also approximate its derivatives by those of f. A more general result was proved by Arakelian [2] (see [14] for a simple proof).

Let \mathbf{C}^n be the complex Euclidean space of dimension n. Our main result is an extension of Carleman's theorem to proper holomorphic embeddings of \mathbf{C} into \mathbf{C}^n for n>1:

1.1. Theorem. Let n > 1 and $r \ge 0$ be integers. Given a proper embedding $\lambda: \mathbf{R} \hookrightarrow \mathbf{C}^n$ of class \mathcal{C}^r and a continuous positive function $\eta: \mathbf{R} \to (0, \infty)$, there exists a proper holomorphic embedding $f: \mathbf{C} \hookrightarrow \mathbf{C}^n$ such that

$$|f^{(s)}(t) - \lambda^{(s)}(t)| < \eta(t), \quad t \in \mathbf{R}, \ 0 \le s \le r.$$

If in addition $T = \{t_i\} \subset \mathbf{R}$ is discrete, there exists f as above such that

$$f^{(s)}(t) = \lambda^{(s)}(t), \quad t \in T, \ 0 \le s \le r$$

Definition. Two proper holomorphic embeddings $f, g: \mathbf{C} \hookrightarrow \mathbf{C}^n$ are said to be Aut \mathbf{C}^n -equivalent if $\Phi \circ f = g$ for some holomorphic automorphism Φ of \mathbf{C}^n .

1.2. Corollary. For each n > 1 the set of Aut \mathbb{C}^n -equivalence classes of proper holomorphic embeddings $\mathbb{C} \hookrightarrow \mathbb{C}^n$ is uncountable.

For $n \ge 3$ the corollary is due to Rosay and Rudin [16]. The corollary follows from Theorem 1.1 and a result of Rosay and Rudin [15] to the effect that for each