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1. Introduction 

We begin by recalling several definitions, introduced in the authors' paper [3], 

concerning complex analytic families of complex manifolds. 

By a complex analytic fibre space we mean a triple (~, ~ ,  M) of connected 

complex manifolds ~, M and a holomorphic map ~ of ~ onto M. A fibre ~ - l ( t ) ,  

t G M ,  of the fibre space is singular if there exists a point p E~-1( t )  such that  the 

rank of the jacobian matrix of the map z~ at  p is less than the dimension of M. 

D ~. F I ~ I T I O ~ 1. We say that  ~ ~ M is a complex analytic family of compact, 

complex manifolds if (~, ~ ,  M) is a complex analytic fibre space without singular fibres 

whose fibres are connected, compact manifolds and whose base space M is connected. 

With reference to a complex manifold V 0 = z~ -1 (0), 0 E M, we call any V, = ~ - *  (0, 

t E M, a deformation of V 0 and we call ~ Z M a complex analytic family of deforma- 

tions of V 0. 

D~ .~I~ITION 2. A complex analytic family ~ M  of compact, complex mani- 

folds is (complex analytically) complete at the point t E M if, for any complex ana- 

lytic family ~/9 L N such that  :r -1 ( 0 ) = ~ - 1  (t) for a point 0 E N, there exist a holo- 

morphic map s-~ t(s), t (O)=t ,  of a neighborhood U of 0 on N and a holomorphie 

map g of ~-~ (U) into ~ which maps each fibre ~z-I(8), s E U of ~ biregularly onto 

~ - l ( t ( s ) ) .  The complex analytic family ~ Z M  is called (complex analyt ical ly)com- 

plete if it is (complex analytically) complete at  each point t of M. 


