A THEOREM OF COMPLETENESS FOR COMPLEX ANALYTIC FIBRE SPACES

BY

K. KODAIRA and D. C. SPENCER

The Institute for Advanced Study and Princeton University

1. Introduction

We begin by recalling several definitions, introduced in the authors' paper [3], concerning complex analytic families of complex manifolds.

By a complex analytic fibre space we mean a triple (\mathcal{V}, ϖ, M) of connected complex manifolds \mathcal{V} , M and a holomorphic map ϖ of \mathcal{V} onto M. A fibre $\varpi^{-1}(t)$, $t \in M$, of the fibre space is *singular* if there exists a point $p \in \varpi^{-1}(t)$ such that the rank of the jacobian matrix of the map ϖ at p is less than the dimension of M.

DEFINITION 1. We say that $\mathfrak{V} \stackrel{\varpi}{\to} M$ is a complex analytic family of compact, complex manifolds if $(\mathfrak{V}, \varpi, M)$ is a complex analytic fibre space without singular fibres whose fibres are connected, compact manifolds and whose base space M is connected.

With reference to a complex manifold $V_0 = \overline{\omega}^{-1}(0)$, $0 \in M$, we call any $V_t = \overline{\omega}^{-1}(t)$, $t \in M$, a deformation of V_0 and we call $\mathcal{V} \xrightarrow{\varpi} M$ a complex analytic family of deformations of V_0 .

DEFINITION 2. A complex analytic family $\mathfrak{V} \xrightarrow{\varpi} M$ of compact, complex manifolds is (complex analytically) complete at the point $t \in M$ if, for any complex analytic family $\mathcal{W} \xrightarrow{\pi} N$ such that $\pi^{-1}(0) = \varpi^{-1}(t)$ for a point $0 \in N$, there exist a holomorphic map $s \to t(s)$, t(0) = t, of a neighborhood U of 0 on N and a holomorphic map g of $\pi^{-1}(U)$ into \mathcal{V} which maps each fibre $\pi^{-1}(s)$, $s \in U$ of \mathcal{W} biregularly onto $\varpi^{-1}(t(s))$. The complex analytic family $\mathcal{V} \xrightarrow{\varpi} M$ is called (complex analytically) complete if it is (complex analytically) complete at each point t of M.