Riemann's zeta-function and the divisor problem. II

Matti Jutila

1. Introduction

An interesting analogy between the divisor function $d(n)$ and the function $\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2}$ was pointed out by F.V. Atkinson [1] fifty years ago. A celebrated result in this direction is Atkinson's formula [2] for the error term $E(T)$ in the relation

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} d t=(\log (T / 2 \pi)+2 \gamma-1) T+E(T)
$$

where γ denotes Euler's constant. The most significant terms in this formula areup to an oscillating sign-similar to those in Voronoi's formula for the error term $\Delta(x)$ in Dirichlet's divisor problem for the sum

$$
\sum_{n \leq x} d(n)=(\log x+2 \gamma-1) x+\Delta(x) .
$$

More precisely, $E(T)$ is comparable with $2 \pi \Delta(T / 2 \pi)$ in this sense. In [7] we showed that $E(T)$ should actually be compared with $2 \pi \Delta^{*}(T / 2 \pi)$, where

$$
\Delta^{*}(x)=-\Delta(x)+2 \Delta(2 x)-\frac{1}{2} \Delta(4 x)
$$

because the Voronoi formula for $2 \pi \Delta^{*}(T / 2 \pi)$ is analogous to Atkinson's formula for $E(T)$ even as to the signs of the terms.

The function $\Delta^{*}(x)$ can be understood as the error in a certain divisor problem. Namely, it was observed by T. Meurman [10] that

$$
\frac{1}{2} \sum_{n \leq 4 x}(-1)^{n} d(n)=(\log x+2 \gamma-1) x+\Delta^{*}(x)
$$

