On the distribution of Sidon series

Nakhlé H. Asmar $(^1)$ and Stephen Montgomery-Smith $(^2)$

1. Introduction

Suppose that G is a compact abelian group with dual group Γ . Denote the normalized Haar measure on G by μ . Let $\mathcal{C}(G)$ be the Banach space of continuous complex-valued functions on G. If $S \subset \Gamma$, a function $f \in L^1(G)$ is called S-spectral whenever \hat{f} is supported in S, where here and throughout the paper $\widehat{}$ denotes taking the Fourier transform. The collection of S-spectral functions that belong to a class of functions \mathcal{W} will be denoted by \mathcal{W}_S .

Definition 1.1. A subset E of Γ is called a Sidon set if there is a constant c>0, depending only on E, such that

(1)
$$\sum_{\gamma \in \Gamma} |\hat{f}(\gamma)| \le c \, \|f\|_{\infty}$$

for every $f \in \mathcal{C}_E(G)$. The smallest constant c such that (1) holds is denoted by S(E) and is called the constant of sidonicity of E, or the Sidon constant of E.

If $E = \{\gamma_j\} \subset \Gamma$ is a Sidon set and $\{a_j\}$ is a sequence in a Banach space B, then the formal series $\sum a_j \gamma_j$ will be referred to as a *B*-valued Sidon series. The norm on a given Banach space B will be denoted by $\|\cdot\|$, or, sometimes, by $\|\cdot\|_B$.

It is well-known that Sidon series share many common properties with Rademacher series. The following theorem of Pisier illustrates this fact and will serve as a crucial tool in our proofs.

Theorem 1.2 [Pi1, Théorème 2.1]. Suppose that $E = \{\gamma_n\} \subset \Gamma$ is a Sidon set, that B is a Banach space, and that $a_1, ..., a_N \in B$. There is a constant c_1 , depending

^{(&}lt;sup>1</sup>) Supported by NSF grant DMS 9102044

^{(&}lt;sup>2</sup>) Supported by NSF grant DMS 9001796