Hyperbolicity of localizations

Tatsuo Nishitani

1. Introduction

Let $P(x, D)$ be a differential operator of order m in an open set $\Omega \subset \mathbf{R}^{n+1}$ with coordinates $x=\left(x_{0}, x^{\prime}\right)=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$, hence a sum of differential polynomials $P_{j}(x, D)$ of order $j(j \leq m)$ with symbols $P_{j}(x, \xi)$. In [7] Ivrii-Petkov has proved a necessary condition for the Cauchy problem of $P(x, D)$ to be correctly posed which asserts that $P_{m-j}(z)$ must vanish of order $r-2 j$ at z if $P_{m}(z)$ vanishes of order r at z with $z=(x, \xi) \in T^{*} \Omega \backslash 0$. This enables us to define the localization $P_{z_{0}}(z)$ at a multiple characteristic z_{0} (of $P_{m}(z)$) following Helffer [4] which is a polynomial on $T_{z_{0}}\left(T^{*} \Omega\right)$.

In this note we show that $P_{z_{0}}(z)$ is hyperbolic, that is verifies Gårding's condition if the Cauchy problem for $P(x, D)$ is correctly posed. The proof is based on the arguments of Svensson [9].

Since $P_{z_{0}}(z)$ is hyperbolic one can define the localizations $P_{\left(z_{0}, z_{1}, \ldots, z_{s}\right)}(z)$ successively as the localization of $P_{\left(z_{0}, z_{1}, \ldots, z_{s}-1\right)}(z)$ at z_{s} which are hyperbolic polynomials on $T_{z_{0}}\left(T^{*} \Omega\right) \cong \ldots \cong T_{z_{s}}\left(T^{*} \Omega\right)$ (see Hörmander [6, II] and Atiyah-Bott-Gårding [1]). It may happen that the lineality $\Lambda_{\left(z_{0}, z_{1}, \ldots, z_{s}\right)}\left(P_{m}\right)$ of $P_{m\left(z_{0}, z_{1}, \ldots, z_{s}\right)}(z)$ is an involutive subspace with respect to the canonical symplectic structure on $T_{z_{0}}\left(T^{*} \Omega\right)$. In this case we prove that for the Cauchy problem to be correctly posed it is necessary that

$$
P_{\left(z_{0}, z_{1}, \ldots, z_{s}\right)}(z)=P_{m\left(z_{0}, z_{1}, \ldots, z_{s}\right)}(z)
$$

This argument was also used in Bernardi-Bove-Nishitani [2] with $s=1$.

2. The localization is hyperbolic

We denote by $L_{z_{0}}^{m, r}$ the set of pseudodifferential operators P near z_{0} with

