Hyperbolicity of localizations

Tatsuo Nishitani

1. Introduction

Let P(x,D) be a differential operator of order m in an open set $\Omega \subset \mathbf{R}^{n+1}$ with coordinates $x = (x_0, x') = (x_0, x_1, ..., x_n)$, hence a sum of differential polynomials $P_j(x,D)$ of order j $(j \leq m)$ with symbols $P_j(x,\xi)$. In [7] Ivrii–Petkov has proved a necessary condition for the Cauchy problem of P(x,D) to be correctly posed which asserts that $P_{m-j}(z)$ must vanish of order r-2j at z if $P_m(z)$ vanishes of order rat z with $z = (x,\xi) \in T^*\Omega \setminus 0$. This enables us to define the localization $P_{z_0}(z)$ at a multiple characteristic z_0 (of $P_m(z)$) following Helffer [4] which is a polynomial on $T_{z_0}(T^*\Omega)$.

In this note we show that $P_{z_0}(z)$ is hyperbolic, that is verifies Gårding's condition if the Cauchy problem for P(x, D) is correctly posed. The proof is based on the arguments of Svensson [9].

Since $P_{z_0}(z)$ is hyperbolic one can define the localizations $P_{(z_0,z_1,...,z_s)}(z)$ successively as the localization of $P_{(z_0,z_1,...,z_{s-1})}(z)$ at z_s which are hyperbolic polynomials on $T_{z_0}(T^*\Omega) \cong ... \cong T_{z_s}(T^*\Omega)$ (see Hörmander [6, II] and Atiyah-Bott-Gårding [1]). It may happen that the lineality $\Lambda_{(z_0,z_1,...,z_s)}(P_m)$ of $P_{m(z_0,z_1,...,z_s)}(z)$ is an involutive subspace with respect to the canonical symplectic structure on $T_{z_0}(T^*\Omega)$. In this case we prove that for the Cauchy problem to be correctly posed it is necessary that

$$P_{(z_0,z_1,\ldots,z_s)}(z) = P_{m(z_0,z_1,\ldots,z_s)}(z).$$

This argument was also used in Bernardi–Bove–Nishitani [2] with s=1.

2. The localization is hyperbolic

We denote by $L_{z_0}^{m,r}$ the set of pseudodifferential operators P near z_0 with