Respectful quasiconformal extension from dimension n-1 to n

Jouni Luukkainen

1. Introduction

Tukia and Väisälä proved in [20] that every quasiconformal self-homeomorphism f of \mathbf{R}^{n-1} with $n \ge 2$ can be extended to a quasiconformal self-homeomorphism F of $\mathbf{R}^{n}_{+} = \mathbf{R}^{n-1} \times [0, \infty)$ which, in addition, in the hyperbolic metric of $H^n = \mathbf{R}^{n-1} \times (0, \infty)$ is bi-Lipschitz and uniformly approximates arbitrarily closely a natural homeomorphic extension F_f of f. The main result of this paper, Theorem 3.1, is that if X_0 is the subset \mathbf{R}^p $(0 \le p < n)$ or \mathbf{R}^p_+ $(1 \le p < n)$ of \mathbf{R}^{n-1} and if f respects X_0 , i.e., maps it onto itself, then F can be chosen to respect $X = X_0 \times [0, \infty)$. Following Siebenmann, we call this extension theorem respectful (to X). An easy consequence, Theorem 4.1, is that if we forgo the properties of F involving the hyperbolic metric, F can be prescribed on X. The respectful quasiconformal Schoenflies extension theorem allows us to use Theorem 3.1 in Section 5 to show that every locally quasiconformal (LQC) self-homeomorphism of \mathbf{R}^{n-1} respecting X_0 can be extended to an LQC self-homeomorphism of \mathbf{R}^n_+ respecting X. Moreover, the extension can be prescribed on X. This result, which generalizes the non-respectful version of it proved by the author in [10], is needed in [13] when proving that a self-homeomorphism of an LQC manifold M which respects a closed locally LQC flat LQC submanifold Q of M can be respectfully approximated by LQC homeomorphisms, i.e., by ones respecting Q, also in the case where Q meets the boundary of M (in this approximation theorem dimension four must necessarily be excluded).

In the proof of our main result we follow the simplified version of the proof of [20] as indicated in [19; 7.1]. For their part, Tukia and Väisälä were inspired by Carleson's [4] quasiconformal extension method in the case $n \leq 4$. We first decompose H^n into similar pieces (parallelotopes) and give each piece an index in $\{1, ..., 2^n\}$ such that pieces of the same index are disjoint. From the quasiconformality of f it follows that the restrictions of the homeomorphism F_f to slightly larger paral-